The aim of this phase I/II nonrandomized trial was to assess feasibility, safety as well as immunological and clinical responses of a mRNA-based vaccination in patients with stage IV renal cell cancer using granulocyte-macrophage colony stimulating factor (GM-CSF) as adjuvant. Intradermal injections of in vitro transcribed naked mRNA, which was generated using plasmids coding for the tumor-associated antigens mucin 1(MUC1), carcinoembryonic (CEA), human epidermal growth factor receptor 2 (Her-2/neu), telomerase, survivin, and melanoma-associated antigen 1 (MAGE-A1) were performed in 30 enrolled patients. In the first 14 patients (cohort A) vaccinations were administered on days 0, 14, 28, and 42 (20 µg/antigen) while in the consecutive 16 patients (cohort B) an intensified protocol consisting of injections at days 0-3, 7-10, 28, and 42 (50 µg/antigen) was used. In both cohorts, after this induction period, vaccinations were repeated monthly until tumor progression analyzed by Response Evaluation Criteria In Solid Tumors criteria (RECIST). Vaccinations were well tolerated with no severe side effects and induced clinical responses [six stable diseases (SD) and one partial response in cohort A and nine SD in cohort B]. In cohort A, 35.7% survived 4 years (median survival 24 months) compared to 31.25% in cohort B (median survival 29 months). Induction of CD4(+) and CD8(+) T cell responses was shown for several tumor-associated antigens (TAA) using interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and Cr-release assays.
BackgroundDendritic cells (DC) are the most potent antigen-presenting cells (APC) with the unique ability to activate naïve T cells and to initiate and maintain primary immune responses. Immunosuppressive and anti-inflammatory stimuli on DC such as the cytokine IL-10 suppress the activity of the transcription factor NF-κB what results in downregulation of costimulatory molecules, MHC and cytokine production. Glycoprotein NMB (GPNMB) is a transmembrane protein, which acts as a coinhibitory molecule strongly inhibiting T cell responses if present on APC. Interestingly, its expression on human monocyte-derived dendritic cells (moDC) is dramatically upregulated upon treatment with IL-10 but also by the BCR-ABL tyrosine kinase inhibitors (TKI) imatinib, nilotinib or dasatinib used for the treatment of chronic myeloid leukemia (CML). However, the molecular mechanisms responsible for GPNMB overexpression are yet unknown.ResultsThe immunosuppressive cytokine IL-10 and the BCR-ABL TKI imatinib or nilotinib, that were examined here, concordantly inhibit the PI3K/Akt signaling pathway, thereby activating the downstream serine/threonine protein kinase GSK3ß, and subsequently the microphthalmia-associated transcription factor (MITF) that is phosphorylated and translocated into the nucleus. Treatment of moDC with a small molecule inhibitor of MITF activity reduced the expression of GPNMB at the level of mRNA and protein, indicating that GPNMB expression is in fact facilitated by MITF activation. In line with these findings, PI3K/Akt inhibition was found to result in GPNMB overexpression accompanied by reduced stimulatory capacity of moDC in mixed lymphocyte reactions (MLR) with allogeneic T cells that could be restored by addition of the GPNMB T cell ligand syndecan-4 (SD-4).ConclusionsIn summary, imatinib, nilotinib or IL-10 congruently inhibit the PI3K/Akt signaling pathway thereby activating MITF in moDC, resulting in a tolerogenic phenotype. These findings extend current knowledge on the molecular mechanisms balancing activating and inhibitory signals in human DC and may facilitate the targeted manipulation of T cell responses in the context of DC-based immunotherapeutic interventions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12964-015-0099-5) contains supplementary material, which is available to authorized users.
Renal cell carcinoma (RCC) is an immunogenic tumor for which immunotherapeutic approaches could be associated with clinically relevant responses. It was recently shown, that induction of T-cell responses against multiple tumor-associated antigen (TAA) epitopes results in prolonged overall survival in RCC patients. In 2003–2005, we performed a phase I/II trial testing an mRNA-based vaccine formulation consisting of a mixture of in vitro transcribed RNA coding for six different TAAs (MUC1, CEA, Her2/neu, telomerase, survivin, MAGE-A1) in 30 metastatic RCC (mRCC) patients. In the first 14 patients, vaccinations were applied i.d. on days 0, 14, 28, and 42. In the consecutive 16 patients, an intensified protocol consisting of i.d. injections (daily on days 0–3, 7–10, 28, and 42) was used. After the respective induction periods, patients in both cohorts were vaccinated monthly until tumor progression. At survival update performed in July 2015, one of the 30 patients was still alive. One patient was lost to follow-up. Median survival of 24.5 mo (all patients) and 89 mo (favorable risk patients) exceeded predicted survival according to Memorial Sloan Kettering Cancer Center (MSKCC) risk score. Impressively, long-term survivors displayed immunological responses to the applied antigens while vice versa no patient without detectable immune response had survived more than 33 mo. The current survival update shows a clear correlation between survival and immunological responses to TAAs encoded by the naked mRNA vaccine. This is one of the first vaccination studies and the only RNA trial that reports on safety and efficacy after a follow-up of more than 10 y.
Multiple approaches presently aim to combine targeted therapies using tyrosine kinase inhibitors with immunotherapy. Ex vivo-generated dendritic cells are frequently used in such strategies due to their unique ability to initiate primary T-cell immune responses. Besides governing tumor cell growth, many kinases targeted by tyrosine kinase inhibitors are involved in the development and function of dendritic cells and thus tyrosine kinase inhibitor therapy may cause immunoinhibitory side effects. We here report that exposure of developing human monocyte-derived dendritic cells to the BCR-ABL inhibitors imatinib, dasatinib, and nilotinib results in profound upregulation of the transmembrane glycoprotein osteoactivin that has recently been characterized as a negative regulator of T-cell activation. Thus, in line with osteoactivin upregulation, exposure to tyrosine kinase inhibitors resulted in significantly reduced stimulatory capacity of dendritic cells in mixed lymphocyte reactions that could be restored by the addition of blocking anti-osteoactivin antibody. Our data demonstrate that tyrosine kinase inhibitor-mediated inhibition of dendritic cell function is, at least in great part, mediated by upregulation of the immune inhibitory molecule osteoactivin.
Recent studies suggest that multiple myeloma is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell immunotherapy. As standard of care in myeloma includes proteasome inhibitor therapy, it is of great importance to characterize the effects of this treatment on HLA-restricted antigen presentation and implement only robustly presented targets for immunotherapeutic intervention. Here, we present a study that longitudinally and semi-quantitatively maps the effects of the proteasome inhibitor carfilzomib on HLA-restricted antigen presentation. The relative presentation levels of 4780 different HLA ligands were quantified in an in vitro model employing carfilzomib treatment of MM.1S and U266 myeloma cells, which revealed significant modulation of a substantial fraction of the HLA-presented peptidome. Strikingly, we detected selective down-modulation of HLA ligands with aromatic C-terminal anchor amino acids. This particularly manifested as a marked reduction in the presentation of HLA ligands through the HLA allotypes A*23:01 and A*24:02 on MM.1S cells. These findings implicate that carfilzomib mediates a direct, peptide motif-specific inhibitory effect on HLA ligand processing and presentation. As a substantial proportion of HLA allotypes present peptides with aromatic C-termini, our results may have broad implications for the implementation of antigen-specific treatment approaches in patients undergoing carfilzomib treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.