Solid‐state cooling is an environmentally friendly, no global warming potential alternative to vapor compression‐based systems. Elastocaloric cooling based on NiTi shape memory alloys exhibits excellent cooling capabilities. Due to the high specific latent heats activated by mechanical loading/unloading, large temperature changes can be generated in the material. The small required work input enables a high coefficient of performance. An overview of elastocaloric cooling from basic principles, such as elastocaloric cooling cycles, material characterization, modeling, and optimization, to the design of elastocaloric cooling devices is presented. Current work performed within the DFG (Deutsche Forschungsgemeinschaft) Priority Program SPP 1599 “Ferroic Cooling”, which is focused on the development and realization of a continuously operating elastocaloric cooling device, is highlighted. The cooling device operates in a rotatory mode with wires under tensile loading. The design allows maximization of cooling power by suitable wire diameter scaling as well as efficiency optimization by implementing a novel drive concept. Finally, computer‐aided design (CAD) models of the discussed solid‐state air cooling device are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.