The structural chemistry and reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111) under ultra-high-vacuum (UHV) conditions has been studied by a combination of experimental techniques (scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, XPS) and DFT calculations. Depending on the deposition conditions, TAPP forms three main assemblies, which result from initial submonolayer coverages based on different intermolecular interactions: a close-packed assembly similar to a projection of the bulk structure of TAPP, in which the molecules interact mainly through van der Waals (vDW) forces and weak hydrogen bonds; a porous copper surface coordination network; and covalently linked molecular chains. The Cu substrate is of crucial importance in determining the structures of the aggregates and available reaction channels on the surface, both in the formation of the porous network for which it provides the Cu atoms for surface metal coordination and in the covalent coupling of the TAPP molecules at elevated temperature. Apart from their role in the kinetics of surface transformations, the available metal adatoms may also profoundly influence the thermodynamics of transformations by coordination to the reaction product, as shown in this work for the case of the Cu-decorated covalent poly(TAPP-Cu) chains.
A range of 2,9-perfluoroalkyl-substituted tetraazaperopyrene (TAPP) derivatives (1-5) was synthesised by reacting 4,9-diamino-3,10-perylenequinone diimine (DPDI) with the corresponding carboxylic acid chloride or anhydride in the presence of a base. The reaction of compounds 1-4 with dichloroisocyanuric acid (DIC) in concentrated sulphuric acid resulted in the fourfold substitution of the tetraazaperopyrene core, yielding the 2,9-bisperfluoroalkyl-4,7,11,14-tetrachloro-1,3,8,10-tetraazaperopyrenes 6-9, respectively. The optical and electrochemical data demonstrate the drastic influence of the core substitution on the properties. All compounds are highly luminescent (fluorescence quantum yields of up to Φ=0.8). The LUMO energies of the tetrachlorinated TAPP derivatives (determined by cyclic voltammetry and computed by DFT calulations) were found to be below -4 eV. In the course of this work the performance of TAPP derivatives in organic thin-film transistors (TFTs) was investigated, and their n-channel characteristics with field-effect mobilities of up to 0.14 cm(2) V(-1) s(-1) and an on/off current ratio of >10(6) were confirmed. Long-term stabilities of 3-4 months under ambient conditions of the devices were established. Complementary inverters and ring oscillators with n-channel TFTs based on compound 8 and p-channel TFTs based on dinaphtho-[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) were fabricated on a glass substrate.
Chiral recognition as well as chirality transfer in supramolecular self-assembly and on-surface coordination is studied for the enantiopure 6,13-dicyano[7]helicene building block. It is remarkable that, with this helical molecule, both H-bonded chains and metal-coordinated chains can be formed on the same substrate, thereby allowing for a direct comparison of the chain bonding motifs and their effects on the self-assembly in experiment and theory. Conformational flexure and both adsorbate/adsorbent and intermolecular interactions can be identified as factors influencing the chiral recognition at the binding site. The observed H-bonded chains are chiral, however, the overall appearance of Cu-coordinated chains is no longer chiral. The study was performed via scanning tunneling microscopy, X-ray-photoelectron spectroscopy and density functional theory calculations. We show a significant influence of the molecular flexibility and the type of bonding motif on the chirality transfer in the 1D self-assembly.
ABSTRACT:The formation of on-surface coordination polymers is controlled by the interplay of chemical reactivity and structure of the building blocks, as well as by the orientating role of the substrate registry. Beyond the pre-determined patterns of structural assembly, the chemical reactivity of the reactants involved may provide alternative pathways in their aggregation. Organic molecules, which are transformed in a surface reaction, may be subsequently trapped via coordination of homo-or heterometal adatoms, which may also play a role in the molecular transformation itself. The amino-functionalized perylene derivative, 4,9-diaminoperylene-quinone-3,10-diimine (DPDI), undergoes specific levels of dehydrogenation (-1 H 2 or -3 H 2 ) depending on the nature of the present adatoms (Fe, Co, Ni or Cu, respectively). In this way, the molecule is converted to an endo-or an exo-ligand, possessing a concave or convex arrangement of ligating atoms, which is decisive for the formation of either 1D or 2D coordination polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.