The oxidation and creep behaviour of novel eutectic-eutectoid Mo-Si-Ti alloys were studied and compared to previously investigated entirely eutectic Mo-20Si-52.8Ti (at%) and eutectoid Mo-21Si-34Ti reference alloys [Schliephake et al. in Intermetallics 104 (2019) 133-142]. While the latter reference alloys showed either outstanding oxidation behaviour in the temperature range of 800 to 1200 °C (eutectic alloy) or reasonable creep resistance (eutectoid alloy), a combination of both was successfully achieved in a Ti-rich alloy variant (Mo-21Si-43.4Ti). The ubiquitous catastrophic oxidation ("pesting") of Mo-based alloys at 800 °C is suppressed in this alloy and reasonable oxidation resistance at higher temperatures is observed. For the first time, the unexpected oxidation resistance of the alloys exhibiting eutectic volume fractions of more than 50 vol% is rationalised by a systematic deconvolution of mass gain by scale formation and mass loss by evaporation of volatile species. Furthermore, creep is revealed to be based on similar creep mechanisms throughout the alloy series. Therefore, the observed improvement in creep resistance of the pesting-resistant Ti-rich alloy variant over the eutectic alloy is attributed to the decreasing homologous temperature when testing both at 1200 °C.
The precipitation behaviour in a novel Al0.5MoTaTi complex concentrated alloy (CCA) is described in this study. The alloy was fabricated through an arc-melting process. Solution heat treatment and additional aging was performed at 1673 K and 1273 K. It was found, that a disordered body-centred cubic phase (bcc) precipitates in cuboidaland loop-shaped form within an ordered B2 phase. The mechanism of the formation of the loops is believed to be related to the transformation of anti-phase boundaries (APB) in the ordered B2 phase at high temperatures, which act as nucleation sites for the disordered bcc phase during cooling and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.