We demonstrate that two isoforms of the cytosolic phospholipase A 2 , cPLA 2 a and cPLA 2 g, are present in Ehrlich ascites tumor cells. Both enzymes are almost uniformly distributed throughout the cells under control conditions, as visualized by laser-scanning confocal microscopy. Stimulation by either hypotonic cell swelling or addition of the Ca 21 ionophore A23187 results in translocation of cPLA 2 a, but not cPLA 2 g, to the nucleus, where it forms hot-spot-like clusters. Our group previously showed that release of radioactively labeled arachidonic acid, incorporated into the phospholipids of Ehrlich cells, was immediately and transiently increased on hypotonic cell swelling [Thoroed, S.M., Lauritzen, L., Lambert, I.H., Hansen, H.S. & Hoffmann, E.K. (1997) J. Membr. Biol. 160, 47±58]. We now demonstrate that arachidonic acid is released from the nuclear fraction following hypotonic exposure. Stimulation of Ehrlich cells with A23187 also leads to an increase in arachidonic acid release from the nucleus. However, as hypotonic cell swelling is not accompanied by any detectable increase in intracellular concentration of free cytosolic Ca 21 ([Ca 21 ] i ), stimulus-induced translocation of cPLA 2 a can also occur without elevation of [Ca 21 ] i . The stimulus-induced translocation of cPLA 2 a appears not to be prevented by inhibition of mitogen-activated protein (MAP) kinase activation, p38 MAP kinase, tyrosine kinases and protein kinase C, hence, phosphorylation is not crucial for the stimulus-induced translocation of cPLA 2 a. Disruption of F-actin did not affect the translocation process, thus, an intact F-actin cytoskeleton does not seem to be required for translocation of cPLA 2 a.
The K+ and Cl- currents activated by Ca2+-ionophore treatment or by hypotonic cell swelling have been studied in Ehrlich ascites tumour cells by the patch-clamp technique. A charybdotoxin-inhibitable K+ current was activated by increasing intracellular Ca2+ concentration. In contrast, the K+ current activated by cell swelling was insensitive to charybdotoxin as well as to apamin, suggesting that channels different from those sensitive to Ca2+ are responsible for regulatory volume adjustments in these cells. The magnitude of the K+ and Cl- currents activated by hypotonic challenge was markedly temperature-dependent, possibly reflecting the temperature-dependence of enzymes involved in the intracellular signalling of cell volume regulation.
The supernatant from a suspension of Ehrlich cells exposed to centrifugation at 700xg for 45 s induced a transient increase in the intracellular concentration of free, cytosolic Ca2+, [Ca2+]i, as well as activation of an outwardly rectifying whole-cell current when added to a suspension of non-stimulated cells. These effects were inhibited by suramin, a non-specific P2 receptor antagonist, and mimicked by ATP. Reversed phase HPLC analysis revealed that the supernatant from Ehrlich cells exposed to centrifugation contained 2. 6+/-0.2 microM ATP, and that the mechanical stress-induced release of ATP was inhibited by glibenclamide and verapamil, non-specific inhibitors of the cystic fibrosis transmembrane conductance regulator and P-glycoprotein, respectively. After trypan blue staining, less than 0.5% of the cells were unable to extrude the dye. Addition of extracellular ATP induced a suramin-sensitive, transient, concentration-dependent increase in [Ca2+]i, activation of an outwardly rectifying whole-cell current and a hyperpolarization of the plasma membrane. The ATP-induced hyperpolarization of the plasma membrane was strongly inhibited in the presence of charybdotoxin (ChTX), an inhibitor of several Ca2+-activated K+ channels, suggesting that stimulation of P2 receptors in Ehrlich cells evokes a Ca2+-activated K+ current. The relative potencies of several nucleotides (ATP, UTP, ADP, 2-MeSATP, alpha,beta-MeATP, bzATP) in eliciting an increase in [Ca2+]i, as well as the effect of repetitive addition of nucleotides were investigated. The results lead us to conclude that mechanical stimulation of Ehrlich cells leads to release of ATP, which in turn stimulates both P2Y1 and P2Y2 receptors, resulting in Ca2+ influx as well as release and activation of an outwardly rectifying whole-cell current.
Stimulation of Ehrlich ascites tumor cells with leukotriene D4 (LTD4) within the concentration range 1-100 nm leads to a concentration-dependent, transient increase in the intracellular, free Ca2+ concentration, [Ca2+]i. The Ca2+ peak time, i.e., the time between addition of LTD4 and the highest measured [Ca2+]i value, is in the range 0.20 to 0.21 min in ten out of fourteen independent experiments. After addition of a saturating concentration of LTD4 (100 nm), the highest measured increase in [Ca2+]i in Ehrlich cells suspended in Ca2+-containing medium is 260 +/- 14 nm and the EC50 value for LTD4-induced Ca2+ mobilization is estimated at 10 nM. Neither the peptido-leukotrienes LTC4 and LTE4 nor LTB4 are able to mimic or block the LTD4-induced Ca2+ mobilization, hence the receptor is specific for LTD4. Removal of Ca2+ from the experimental buffer significantly reduces the size of the LTD4-induced increase in [Ca2+]i. Furthermore, depletion of the intracellular Ins(1,4,5)P3-sensitive Ca2+ stores by addition of the ER-Ca2+-ATPase inhibitor thapsigargin also reduces the size of the LTD4-induced increase in [Ca2+]i in Ehrlich cells suspended in Ca2+-containing medium, and completely abolishes the LTD4-induced increase in [Ca2+]i in Ehrlich cells suspended in Ca2+-free medium containing EGTA. Thus, the LTD4-induced increase in [Ca2+]i in Ehrlich cells involves an influx of Ca2+ from the extracellular compartment as well as a release of Ca2+ from intracellular Ins(1,4,5)P3-sensitive stores. The Ca2+ peak times for the LTD4-induced Ca2+ influx and for the LTD4-induced Ca2+ release are recorded in the time range 0.20 to 0.21 min in four out of five experiments and in the time range 0.34 to 0.35 min in six out of eight experiments, respectively. Stimulation with LTD4 also induces a transient increase in Ins(1,4, 5)P3 generation in the Ehrlich cells, and the Ins(1,4,5)P3 peak time is recorded in the time range 0.27 to 0.30 min. Thus, the Ins(1,4, 5)P3 content seems to increase before the LTD4-induced Ca2+ release from the intracellular stores but after the LTD4-induced Ca2+ influx. Inhibition of phospholipase C by preincubation with U73122 abolishes the LTD4-induced increase in Ins(1,4,5)P3 as well as the LTD4-induced increase in [Ca2+]i, indicating that a U73122-sensitivity phospholipase C is involved in the LTD4-induced Ca2+ mobilization in Ehrlich cells. The LTD4-induced Ca2+ influx is insensitive to verapamil, gadolinium and SK&F 96365, suggesting that the LTD4-activated Ca2+ channel in Ehrlich cells is neither voltage gated nor stretch activated and most probably not receptor operated. In conclusion, LTD4 acts in the Ehrlich cells via a specific receptor for LTD4, which upon stimulation initiates an influx of Ca2+, through yet unidentified Ca2+ channels, and an activation of a U73122-sensitive phospholipase C, Ins(1,4,5)P3 formation and finally release of Ca2+ from the intracellular Ins(1,4,5)P3-sensitive stores.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.