Species of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) are obligate endoparasites infesting mostly freshwater fish. Morphological identification is challenging due to high intraspecific variations. The use of molecular analyses enabled new insights into the diversity and revealed high cryptic presence and unknown distribution patterns for various European species. In Austria only one species, Pomphorhynchus laevis (Müller, 1776), has been reported so far. We conduct an integrative analysis of Pomphorhynchus in Austria with a combination of morphological and molecular methods. Our results revealed the presence of three species of Pomphorhynchus in Austrian waters: Pomphorhynchus laevis, Pomphorhynchus tereticollis (Rudolphi, 1809) and Pomphorhynchus bosniacus Kiskároly and Čanković, 1967. While P. bosniacus was the predominant species in the Danube, P. laevis was recorded exclusively in Styria. Pomphorhynchus tereticollis occurred mainly in rivers of Styria except for one individual found in the Danube. We document the first occurrence of P. bosniacus and P. tereticollis in Austria. We found a high intraspecific haplotype variation in P. bosniacus suggesting that the species has a longer history in Central and Western Europe. It was previously misidentified as P. laevis, which is also true for P. tereticollis. A large number of hosts examined were infected with only juvenile and cystacanth stages suggesting paratenic infections. Our study highlights the importance of using an integrative taxonomic approach in the identification of species of Pomphorhynchus.
Tumor vasculature and angiogenesis play a crucial role in tumor progression. Their visualization is therefore of utmost importance to the community. In this proof-of-principle study, we have established a novel cross-modality imaging (CMI) pipeline to characterize exactly the same murine tumors across scales and penetration depths, using orthotopic models of melanoma cancer. This allowed the acquisition of a comprehensive set of vascular parameters for a single tumor. The workflow visualizes capillaries at different length scales, puts them into the context of the overall tumor vessel network and allows quantification and comparison of vessel densities and morphologies by different modalities. The workflow adds information about hypoxia and blood flow rates. The CMI approach includes well-established technologies such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US), and modalities that are recent entrants into preclinical discovery such as optical coherence tomography (OCT) and high-resolution episcopic microscopy (HREM). This novel CMI platform establishes the feasibility of combining these technologies using an extensive image processing pipeline. Despite the challenges pertaining to the integration of microscopic and macroscopic data across spatial resolutions, we also established an open-source pipeline for the semi-automated co-registration of the diverse multiscale datasets, which enables truly correlative vascular imaging. Although focused on tumor vasculature, our CMI platform can be used to tackle a multitude of research questions in cancer biology.
Several species of avian schistosomes are known to cause dermatitis in humans worldwide. In Europe, this applies above all to species of the genus Trichobilharzia. For Austria, a lot of data are available on cercarial dermatitis and on the occurrence of Trichobilharzia, yet species identification of trematodes in most cases is doubtful due to the challenging morphological determination of cercariae. During a survey of trematodes in freshwater snails, we were able to detect a species in the snail Physella acuta (Draparnaud, 1805) hitherto unknown for Austria, Trichobilharzia physellae; this is also the first time this species has been reported in Europe. Species identification was performed by integrative taxonomy combining morphological investigations with molecular genetic analyses. The results show a very close relationship between the parasite found in Austria and North American specimens (similarity found in CO1 ≥99.57%). Therefore, a recent introduction of T. physellae into Europe can be assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.