The adenovirus E4orf6 protein is shown here to interact with the cellular tumor suppressor protein p53 and to block p53-mediated transcriptional activation. The adenovirus protein inhibited the ability of p53 to bind to human TAFII31, a component of transcription factor IID (TFIID). Earlier work demonstrated that the interaction of p53 with TAFII31 involves a sequence near the NH2-terminus of p53, whereas the E4orf6-p53 interaction occurs within amino acids 318 to 360 of p53. Thus, the E4orf6 protein interacts at a site on p53 distinct from the domain that binds to TAFII31 but nevertheless inhibits the p53-TAFII31 interaction.
We have recently shown that the adenovirus type 5 E4orf6 protein interacts with the cellular tumor suppressor protein p53 and blocks p53 transcriptional functions. Here we report that the E4orf6 protein can promote focus formation of primary rodent epithelial cells in cooperation with adenovirus E1A and E1A plus E1B proteins. The E4orf6 protein can also inhibit p53-mediated suppression of E1A plus E1B-19kDa-induced focus formation. Mutant analysis of the E4orf6 protein demonstrates that these activities correlate with the ability of the adenovirus protein to relieve transcriptional repression mediated by the carboxyl-terminal region of p53 in transient transfection assays. We further demonstrate that expression of wild-type E4orf6 correlates with a dramatic reduction of p53 steady-state levels in transformed rat cells. Our data demonstrate that adenovirus type 5 encodes two different proteins, E1B-55kDa and E4orf6, that bind to p53 and contribute to transformation by modulating p53 transcriptional functions.
Previous studies have shown that the adenovirus type 5 (Ad5) E4orf6 gene product displays features of a viral oncoprotein. It initiates focal transformation of primary rat cells in cooperation with Ad5 E1 genes and confers multiple additional transformed properties on E1-expressing cells, including profound morphological alterations and dramatically accelerated tumor growth in nude mice. It has been reported that E4orf6 binds to p53 and, in the presence of the Ad5 E1B-55kDa protein, antagonizes p53 stability by targeting the tumor suppressor protein for active degradation. In the present study, we performed a comprehensive mutant analysis to assign transforming functions of E4orf6 to distinct regions within the viral polypeptide and to analyze a possible correlation between E4orf6-dependent p53 degradation and oncogenesis. Our results show that p53 destabilization maps to multiple regions within both amino-and carboxy-terminal parts of the viral protein and widely cosegregates with E4orf6-dependent acceleration of tumor growth, indicating that both effects are related. In contrast, promotion of focus formation and morphological transformation require only a carboxyterminal segment of the E4 protein. Thus, these effects are completely independent of p53 stability, but may involve other interactions with the tumor suppressor. Our results demonstrate that at least two distinct activities contribute to the oncogenic potential of Ad5 E4orf6. Although genetically separable, both activities are largely mediated through a novel highly conserved, cysteine-rich motif and a recently described arginine-faced amphipathic alpha helix, which resides within a carboxy-terminal "oncodomain" of the viral protein.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa E1B protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.