A novel approach for unsupervised domain adaptation for neural networks is proposed. It relies on metricbased regularization of the learning process. The metric-based regularization aims at domain-invariant latent feature representations by means of maximizing the similarity between domain-specific activation distributions. The proposed metric results from modifying an integral probability metric such that it becomes less translation-sensitive on a polynomial function space. The metric has an intuitive interpretation in the dual space as the sum of differences of higher order central moments of the corresponding activation distributions. Under appropriate assumptions on the input distributions, error minimization is proven for the continuous case. As demonstrated by an analysis of standard benchmark experiments for sentiment analysis, object recognition and digit recognition, the outlined approach is robust regarding parameter changes and achieves higher classification accuracies than comparable approaches. 1
Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.
This primer aims at providing an overview of existing concepts and facts about triangle functions as they have been presented in [41]. Moreover, it contains new results on triangle functions and proofs for results not easily available. In this first part we present the most important classes of triangle functions, based on the recent notions of semicopula, quasicopula, as well as the more traditional ones of t-norm, copula and (generalized) convolution. We close this part by listing some basic results needed for the applications (inequalities, aspects of stability and invariance of subspaces) and outlining a few open questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.