Familial hemophagocytic lymphohistiocytosis (FHL) is a rare autosomal recessive disorder characterized by hyperactive phagocytes and defects in natural killer cell function. It has been shown previously that mutations in the perforin 1 gene (PRF1) and in UNC13D are associated with FHL2 and FHL3, respectively, indicating genetic heterogeneity. We performed genome-wide homozygosity mapping in a large consanguineous Kurdish kindred with five children affected with FHL. Linkage to a 10 cM region on chromosome 6q24 between D6S1569 and D6S960 defined a novel FHL locus. By screening positional candidate genes, we identified a homozygous deletion of 5 bp in the syntaxin 11 gene (STX11) in this family. We could demonstrate that syntaxin 11 protein was absent in the mononuclear cell fraction of patients with the homozygous 5 bp deletion. In addition to this family, we found homozygous mutations in STX11 in five consanguineous Turkish/Kurdish FHL kindreds including two families with the 5 bp deletion, one family with a large 19.2 kb genomic deletion spanning the entire coding region of STX11 (exon 2) and two families with a nonsense mutation that leads to a premature stop codon in the C-terminal end of the protein. As both STX11 and UNC13D are involved in vesicle trafficking and membrane fusion, we conclude that, besides mutations in perforin 1, defects in the endocytotic or the exocytotic pathway may be a common mechanism in FHL.
Schizosaccharomyces pombe divides by means of a centrally placed division septum. The initiation of septation must be tightly coordinated with events in mitosis, as premature formation of the septum can lethally cut the undivided nucleus. The Spg1p GTPase and the Cdc7p kinase, with which it interacts, play a central role in signaling the initiation of septum formation. Loss-of-function mutations in either gene prevent septation, whereas inappropriate activation of Spg1p can induce septum formation from G 1 or G 2 interphase cells. Increased expression of either gene leads to multiple rounds of septation without cell cleavage, emphasizing the need for precise cell cycle regulation of their activity. To understand the mechanisms underlying this regulation, we have investigated whether these key initiators of septum formation are controlled by changes in their activity and/or location during mitosis and cytokinesis. We demonstrate that Spg1p localizes to the spindle pole body in interphase and to both spindle poles during mitosis. In contrast, Cdc7p shows no discrete localization during interphase, but early in mitosis it associates with both spindle pole bodies and, as the spindle extends, is seen on only one pole of the spindle during anaphase B. Spg1p activity is required for localization of Cdc7p in vivo but not for its kinase activity in vitro. Staining with an antiserum that recognizes preferentially GDP-Spg1p indicates that activated GTP-Spg1p predominates during mitosis when Cdc7p is associated with the spindle pole body. Furthermore, staining with this antibody shows that asymmetric distribution of Cdc7p may be mediated by inactivation of Spg1p on one spindle pole. Deregulated septation in mutant cells correlates with segregation of Cdc7p to both spindle poles.
Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain activates Rac, which in turn activates Pak. Mutations in trio result in projection defects similar to those observed in both Pak and dock mutants, and trio interacts genetically with Rac, Pak, and dock. These data define a signaling pathway from Trio to Rac to Pak that links guidance receptors to the growth cone cytoskeleton. We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension.
The spgl gene (septum-promoting GTPase) was cloned as a multicopy suppressor of a dominant-negative mutant of the Cdc7p kinase. It encodes a small GTPase of the Ras superfamily, spgl is an essential gene. Null or heat-sensitive alleles do not make a division septum, but growth, S-phase, and mitosis continue in the absence of cell division, producing elongated, multinucleate cells. Increased expression of Spglp induces septum formation in G2, S-phase, and pre-Start Gl-arrested cells. This requires the activity of Cdc7p kinase, but not p34 cdc2. Increased expression of Cdc7p bypasses the requirement for Spglp. Spglp and Cdc7p can be coimmunoprecipitated from cell extracts, and interact in the two-hybrid system. These data indicate that Spglp is a key element in controlling the onset of septum formation in Schizosaccharomyces pombe, and that it acts through the Cdc7p kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.