Microtexturing of implant surfaces is of major relevance in the endeavor to improve biorelevant implant designs. In order to elucidate the role of biomaterial’s topography on cell physiology, obtaining quantitative correlations between cellular behavior and distinct microarchitectural properties is in great demand. Until now, the microscopically observed reorganization of the cytoskeleton on structured biomaterials has been difficult to convert into data. We used geometrically microtextured silicon-titanium arrays as a model system. Samples were prepared by deep reactive-ion etching of silicon wafers, resulting in rectangular grooves (width and height: 2 µm) and cubic pillars (pillar dimensions: 2 × 2 × 5 and 5 × 5 × 5 µm); finally sputter-coated with 100 nm titanium. We focused on the morphometric analysis of MG-63 osteoblasts, including a quantification of the actin cytoskeleton. By means of our novel software FilaQuant, especially developed for automatic actin filament recognition, we were first able to quantify the alterations of the actin network dependent on the microtexture of a material surface. The cells’ actin fibers were significantly reduced in length on the pillared surfaces versus the grooved array (4–5 fold) and completely reorganized on the micropillars, but without altering the orientation of cells. Our morpho-functional approach opens new possibilities for the data correlation of cell-material interactions.
Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials' zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.
One of the most popular cell lines in osteogenesis studies is the human osteoblastic line MG-63. For cell biological investigation, it is important that the cells remain stable in their phenotype over several passages in cell culture. MG-63 cells can be used to provide fundamental insights into cell--material interaction. The aim of this study is to present a systematic characterization of the physiological behavior of MG-63 cells in the range of passages 5-30. Significant cell physiology processes during the first 24 h, including cell morphology, availability of adhesion receptors, cell cycle phases, as well as the expression of the signaling proteins Akt, GSK3a/b, IkB-a, ERK1/2, p38-MAPK, and intracellular calcium ion mobilization, remained stable over the entire range of passages P5-P30. Due to these stable characteristics in a wide range of cell culture passages, MG-63 cells can be considered as a suitable in vitro model to analyze the biocompatibility and biofunctionality of implant materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.