This is a case study involving a female patient (NN) with complete loss of autobiographical memory and identity despite normal neurological assessment. To test the hypothesis that patients with dissociative amnesia (DA) possess the ability to covertly process facial identities they are unaware of, we conducted functional magnetic resonance imaging (fMRI) and assessed skin conductance responses (SCR) to (a) strangers, (b) celebrities, and (c) familiar faces not seen since the onset of DA. We also performed associative face-name memory tasks to test the patient's ability to learn and recall newly learned face-name pairs. Although NN did not recognize any of the faces of her friends and relatives, their images triggered a stronger involvement of the left fusiform gyrus, the bilateral hippocampus/amygdala region, the orbitofrontal cortex, the middle temporal regions, and the precuneus, along with higher SCR. During recollection of previously learned face-name pairs, NN (compared to healthy controls) demonstrated a weaker involvement of the hippocampus. Our findings suggest that, in DA, specific arousal systems remain capable of being activated by familiar faces outside of conscious awareness. The decreased activation observed in the hippocampus demonstrates that the functioning of memory-sensitive regions may be impaired by trauma.
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory–visual and auditory–visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory‐specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory–visual and auditory–visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory–visual integration, with superior temporal activation having been seen during auditory–visual integration. A dynamic causal modeling analysis revealed a nonlinear top‐down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory–visual and audio–visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.