The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses and its loss causes fatal autoimmunity in mice. We investigated a large autosomal-dominant family with five individuals presenting with a complex immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with novel splice site and missense mutations in CTLA4. While clinical penetrance was incomplete (eight adults of a total of 19 CTLA4 mutation carriers were considered unaffected), CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in patients and carriers with CTLA4 mutations. Whilst Treg cells were generally present at elevated numbers, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers and antibody levels. Taken together, mutations in CTLA-4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding results in a complex syndrome with features of both autoimmunity and immunodeficiency.
Highlights d Leukocyte invasion is higher in brain metastasis than in CNSendogenous cancers d The tumor type shapes the differentiation of monocytederived macrophages d Brain metastases harbor a high frequency of regulatory T cells d Both activation and exhaustion are prevalent in lymphocytes of the metastatic TME
Non-canonical NF-κB-pathway signaling is integral in immunoregulation. Heterozygous mutations in NFKB2 have recently been established as a molecular cause of common variable immunodeficiency (CVID) and DAVID-syndrome, a rare condition combining deficiency of anterior pituitary hormone with CVID. Here, we investigate 15 previously unreported patients with primary immunodeficiency (PID) from eleven unrelated families with heterozygous NFKB2-mutations including eight patients with the common p.Arg853* nonsense mutation and five patients harboring unique novel C-terminal truncating mutations. In addition, we describe the clinical phenotype of two patients with proximal truncating mutations. Cohort analysis extended to all 35 previously published NFKB2-cases revealed occurrence of early-onset PID in 46/50 patients (mean age of onset 5.9 years, median 4.0 years). ACTH-deficiency occurred in 44%. Three mutation carriers have deceased, four developed malignancies. Only two mutation carriers were clinically asymptomatic. In contrast to typical CVID, most patients suffered from early-onset and severe disease manifestations, including clinical signs of T cell dysfunction e.g., chronic-viral or opportunistic infections. In addition, 80% of patients suffered from (predominately T cell mediated) autoimmune (AI) phenomena (alopecia > various lymphocytic organ-infiltration > diarrhea > arthritis > AI-cytopenia). Unlike in other forms of CVID, auto-antibodies or lymphoproliferation were not common hallmarks of disease. Immunophenotyping showed largely normal or even increased quantities of naïve and memory CD4+ or CD8+ T-cells and normal T-cell proliferation. NK-cell number and function were also normal. In contrast, impaired B-cell differentiation and hypogammaglobinemia were consistent features of NFKB2-associated disease. In addition, an array of lymphocyte subpopulations, such as regulatory T cell, Th17-, cTFH-, NKT-, and MAIT-cell numbers were decreased. We conclude that heterozygous damaging mutations in NFKB2 represent a distinct PID entity exceeding the usual clinical spectrum of CVID. Impairment of the non-canonical NF-κB pathways affects function and differentiation of numerous lymphocyte-subpopulations and thus causes a heterogeneous, more severe form of PID phenotype with early-onset. Further characteristic features are multifaceted, primarily T cell-mediated autoimmunity, such as alopecia, lymphocytic organ infiltration, and in addition frequently ACTH-deficiency.
Identification of excessive IFN-γ production by blood and lymph node-derived T cells of patients with CVID with immune dysregulation will offer new therapeutic avenues for this subgroup. CD21 B cells might serve as a marker of this IFN-γ-associated dysregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.