l-carnitine plays an important role in energy metabolism through supporting the transport of activated fatty acids to the subcellular site of β-oxidation. An acute phase reaction (APR) is known as an energy consuming process. Lipopolysaccharides (LPS) are often used in animal models to study intervention measures during innate immune responses such as APR. Thus, the aim of the study was to investigate the effects of dietary l-carnitine supplementation during an LPS-induced APR in mid-lactating German Holstein cows. Animals were assigned to a control (CON, n = 26) or l-carnitine group (CAR, n = 27, 25 g rumen-protected l-carnitine/cow/d) and received an intravenous injection of LPS (0.5 μg/kg body weight) at day 111 post-partum. Blood samples were collected from day 1 pre-injection until day 14 post-injection (pi). From 0.5 h pi until 72 h pi blood samplings and clinical examinations were performed in short intervals. Clinical signs of the APR were not altered in group CAR except rumen motility which increased at a lower level compared to the CON group after a period of atonia. Group CAR maintained a higher insulin level compared to group CON even up to 72 h pi which might support glucose utilization following an APR.
The health of dairy cows has to be carefully considered for sustainable and efficient animal production. The microbiome of animals plays an important role in the host’s nutrient supply and regulation of immune functions.
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid utilization for generating adenosine triphosphate (ATP). As it might be insufficient around calving due to increased need, L-carnitine supplementation is frequently recommended. Thus, the present study addressed the interplay between the red hemogram, platelets, oxidative stress indices, and L-carnitine supplementation of dairy cows around calving. German Holstein cows were assigned to a control (n = 30) and an L-carnitine group (n = 29, 25 g of rumen-protected L-carnitine per cow and per day), and blood samples were taken from day 42 ante partum (ap) until day 110 postpartum (pp), with a higher sampling frequency during the first three days pp. The time courses of the erythrogram parameters reflected the physiological adaptations to the oxygen need without being influenced by L-carnitine supplementation. Erythrocytic antioxidative enzymatic defence paralleled the relative development of polycythemia ap, while non-enzymatic total plasma antioxidative capacity continuously increased pp. In contrast to erythrocytes, the platelet counts of the L-carnitine supplemented cows varied at significantly higher levels. This can be interpreted as a result of a membrane-stabilizing effect of L-carnitine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.