Phosphoinositolglycan (PIG) molecules have been implicated to stimulate glucose and lipid metabolism in insulin-sensitive cells and tissues in vitro and in vivo. The structural requirements for this partial insulin-mimetic activity remained unclear so far. For establishment of a first structure-activity relationship, a number of PIG compounds were synthesized consisting of the complete or shortened/mutated glycan moiety derived from the structure of the glycosylphosphatidylinositol (GPI) anchor of the GPI-anchored protein, Gce1p, from yeast. The PIG compounds were divided into four classes according to their insulin-mimetic activity in vitro with the typical representatives: compound 41, HO-SO2-O-6Manalpha1(Manalpha1-2)-2Manalpha1 (6-HSO3)- -6Manalpha1-4GluNb eta1-6(D)inositol-1,2-(cyclic)-phosphate; compound 37, HO-PO(H)O-6Manalpha1(Manalpha1-2)-2Manalpha1-6Manal pha1-4GluNbeta1-6( D)inositol-1,2-(cyclic)-phosphate; compound 7, HO-PO(H)O-6Manalpha1-4GluN(1-6(L)inositol-1,2-(cyclic)-ph osp hate; and compound 1, HO-PO(H)O-6Manalpha1-4GluN(1-6(L)inositol. Compounds 41 and 37 stimulated lipogenesis up to 90% (at 20 microM) of the maximal insulin response but with differing concentrations required for 50% activation (EC50 values 2.5 +/- 0.9 vs 4.9 +/- 1.7 microM) as well as glycogen synthase (4.7 +/- 1 vs 9.5 +/- 1.5 microM) and glycerol-3-phosphate acyltransferase (3.5 +/- 0.8 vs 8.0 +/- 1.1 microM). Compound 7 was clearly less potent (20% of the maximal insulin response at 100 microM), whereas compound 1 was almost inactive. This relative ranking in the insulin-mimetic potency between members of the PIG classes (e.g., 41 > 37 >> 7 > 1) was also observed for the (i) activation of glucose transport and glucose transporter isoform 4 translocation in isolated normal and insulin-resistant adipocytes, (ii) inhibition of lipolysis in adipocytes, (iii) stimulation of glucose transport and glycogen synthesis in isolated normal and insulin-resistant diaphragms, and (iv) induction of tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) in diaphragms. The complete glycan core structure (Man3-GluN) of typical GPI anchors including a mannose side chain and the inositolphosphate moiety was required for maximal insulin-mimetic activity of the PIG compounds with some variations possible with respect to the type of residues coupled to the terminal mannose/inositol as well as the type of linkages involved. These data argue for the potency and specificity of the interaction of PIG molecules with putative signaling component(s) (presumably at the level of the IRS proteins) in adipose and muscle cells which finally lead to insulin-mimetic metabolic activity even in insulin-resistant states.
Caveolae and caveolin-containing detergent-insoluble glycolipid-enriched rafts (DIG) have been implicated to function as plasma membrane microcompartments or domains for the preassembly of signaling complexes, keeping them in the basal inactive state. So far, only limited in vivo evidence is available for the regulation of the interaction between caveolae-DIG and signaling components in response to extracellular stimuli. Here, we demonstrate that in isolated rat adipocytes, synthetic intracellular caveolin binding domain (CBD) peptide derived from caveolin-associated pp59Lyn (10 to 100 M) or exogenous phosphoinositolglycan derived from glycosyl-phosphatidylinositol (GPI) membrane protein anchor (PIG; 1 to 10 M) triggers the concentrationdependent release of caveolar components and the GPI-anchored protein Gce1, as well as the nonreceptor tyrosine kinases pp59Lyn and pp125 Fak, from interaction with caveolin (up to 45 to 85%). This dissociation, which parallels redistribution of the components from DIG to non-DIG areas of the adipocyte plasma membrane (up to 30 to 75%), is accompanied by tyrosine phosphorylation and activation of pp59Lyn and pp125Fak (up to 8-and 11-fold) but not of the insulin receptor. This correlates well to increased tyrosine phosphorylation of caveolin and the insulin receptor substrate protein 1 (up to 6-and 15-fold), as well as elevated phosphatidylinositol-3 kinase activity and glucose transport (to up to 7-and 13-fold). Insulin-mimetic signaling by both CBD peptide and PIG as well as redistribution induced by CBD peptide, but not by PIG, was blocked by synthetic intracellular caveolin scaffolding domain (CSD) peptide. These data suggest that in adipocytes a subset of signaling components is concentrated at caveolae-DIG via the interaction between their CBD and the CSD of caveolin. These inhibitory interactions are relieved by PIG. Thus, caveolae-DIG may operate as signalosomes for insulin-independent positive cross talk to metabolic insulin signaling downstream of the insulin receptor based on redistribution and accompanying activation of nonreceptor tyrosine kinases.
Polar headgroups of free glycosyl-phosphatidylinositol (GPI) lipids or protein-bound GPI membrane anchors have been shown to exhibit insulin-mimetic activity in different cell types. However, elucidation of the molecular mode of action of these phospho-inositolglycan (PIG) molecules has been hampered by 1) lack of knowledge of their exact structure; 2) variable action profiles; and 3) rather modest effects. In the present study, these problems were circumvented by preparation of PIG-peptides (PIG-P) in sufficient quantity by sequential proteolytic (V8 protease) and lipolytic (phosphatidylinositol-specific phospholipase C) cleavage of the GPI-anchored plasma membrane protein, Gce1p, from the yeast Saccharomyces cerevisiae. The structure of the resulting PIG-P, NH2-Tyr-Cys-Asn-ethanolamine-PO4-6(Man1-2)Man1-2Man1-+ ++6Man1-4GlcNH(2)1-6myo-inositol-1,2-cyclicPO4, was revealed by amino acid analysis and Dionex exchange chromatography of fragments generated enzymatically or chemically from the neutral glycan core and is in accordance with the known consensus structures of yeast GPI anchors. PIG-P stimulated glucose transport and lipogenesis in normal, desensitized and receptor-depleted isolated rat adipocytes, increased glycerol-3-phosphate acyltransferase activity and translocation of the glucose transporter isoform 4, and inhibited isoproterenol-induced lipolysis and protein kinase A activation in adipocytes. Furthermore, PIG-P was found to stimulate glucose transport in isolated rat cardiomyocytes and glycogenesis and glycogen synthase in isolated rat diaphragms. The concentration-dependent effects of the PIG-P reached 70-90% of the maximal insulin activity with EC50-values of 0.5-5 microM. Chemical or enzymic cleavages within the glycan or peptide portion of the PIG-P led to decrease or loss of activity. The data demonstrate that PIG-P exhibits a potent insulin-mimetic activity which covers a broad spectrum of metabolic insulin actions on glucose transport and metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.