A large percentage of spinal cord-injured subjects suffer from neuropathic pain below the level of the lesion (bNP). The neural mechanisms underlying this condition are not clear. The aim of this study was to elucidate the general effects of spinal deafferentiation and of bNP on electroencephalographic (EEG) activity. In addition, the relationship between the presence of bNP and impaired function of the spinothalamic tract was studied. Measurements were performed in complete and incomplete spinal cord-injured subjects with and without bNP as well as in a healthy control group. Spinothalamic tract function, assessed by contact heat evoked potentials, did not differ between subjects with and without bNP; nevertheless, it was impaired in 94% of subjects suffering from bNP. In the EEG recordings, the degree of deafferentiation was reflected in a slowing of EEG peak frequency in the 6-12-Hz band. Taking into account this unspecific effect, spinal cord-injured subjects with bNP showed significantly slower EEG activity than subjects without bNP. A discrimination analysis in the subjects with spinothalamic tract dysfunction correctly classified 84% of subjects as belonging to either the group with bNP or the group without bNP, according to their EEG peak frequency. These findings could be helpful for both the development of an objective diagnosis of bNP and for testing the effectiveness of new therapeutic agents.
Patients with incomplete spinal cord injury (iSCI) have impaired postural control leading to a high danger of falling. Clinically, it is impossible to assess the extent to which postural instability due to sensorimotor deWcit is inXuenced by a disturbance in the vestibulospinal pathways. Galvanic vestibular stimulation (GVS) was applied to investigate changes in the vestibular spinal responses and their potential inXuence on postural stability in iSCI patients. Six chronic iSCI patients and age-matched controls were stimulated with a bipolar binaural stimulus. The centre of pressure (CoP) and soleus EMG responses during free standing with closed eyes on Wrm and compliant ground were measured. The impairment in postural stability was assessed by the mean amplitude of CoP deXections during two minutes undisturbed standing. Although iSCI patients were signiWcantly less stable than controls, direct GVS responses of the soleus EMG and postural sways tended to be increased on Wrm ground. The GVS responses increased when changing from Wrm to compliant ground, showing a close correlation between the extent of postural instability and the response amplitudes. Therefore, challenging proprioceptive feedback induced a signiWcant up-modulation of the GVS responses. However, when we took the postural instability in iSCI patients into account, the EMG and CoP responses to GVS were reduced compared to controls. The combined assessment of EMG and CoP responses to GVS complements the clinical examination and permits evaluation of the preservation and modulation of vestibulospinal responses in iSCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.