Architected lattice materials, realized through artificial micro‐structuring, have drawn tremendous attention lately due to their enhanced mechanical performances in multifunctional applications. However, the research area on the design of artificial microstructures for the modulation of mechanical properties is increasingly becoming saturated due to extensive investigations considering different possibilities of lattice geometry and beam‐like network design. Thus, there exists a strong rationale for innovative design at a more elementary level. It can enhance and grow the microstructural space laterally for exploiting the potential of geometries and patterns in multiple length scales, and the mutual interactions thereof. A bi‐level design is proposed, where besides having the architected cellular networks at an upper scale, the constituting beam‐like members at a lower scale are further topology‐engineered for most optimum material utilization. The coupled interaction of beam‐level and lattice‐level architectures can enhance the specific elastic properties to an extreme extent (up to ≈25 and 20 times, depending on normal and shear modes, respectively), leading to ultra‐lightweight multifunctional materials for critical applications under static and dynamic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.