Therapeutic monoclonal antibodies (mAbs) are rapidly taking over the treatment of many malignancies, and an astonishing number of mAbs is in development. This causes a high demand for quantification of mAbs in biomatrices both for measuring therapeutic mAb concentrations and to support pharmacokinetics and pharmacodynamics studies. Conventionally, ligand-binding assays are used for these purposes, but LC–MS is gaining popularity. Although intact (top-down) and subunit (middle-down) mAb quantification is reported, signature peptide (bottom-up) quantification is currently most advantageous. This review provides an overview of the reported bottom-up mAb quantification methods in biomatrices as well as general recommendations regarding signature peptide and internal standard selection, reagent use and optimization of digestion in bottom-up quantification methods.
Prostate cancer (PCa) is a significant healthcare problem worldwide. Current diagnosis and treatment methods are limited by a lack of precise in vivo tissue analysis methods. Real‐time cancer identification and grading could dramatically improve current protocols. Here, we report the testing of a thin optical probe using Raman spectroscopy (RS) and classification methods to detect and grade PCa accurately in real‐time. We present the first clinical trial on fresh ex vivo biopsy cores from an 84 patient cohort. Findings from 2395 spectra measured on 599 biopsy cores show high accuracy for diagnosing and grading PCa. We can detect clinically significant PCa from benign and clinically insignificant PCa with 90% sensitivity and 80.2% specificity. We also demonstrate the ability to differentiate cancer grades with 90% sensitivity and specificity ≥82.8%. This work demonstrates the utility of RS for real‐time PCa detection and grading during routine transrectal biopsy appointments.
A Raman Spectroscopy probe is used to discriminate between healthy and cancerous prostate tissue. Results from ex vivo human biopsy tissue are presented. Results show excellent classification performance between the different types of tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.