Excellent cyclic stability and fast charge/discharge capacity demonstrated by supercapacitors foster research interest into new electrode materials with 100% cycle life and high specific capacitance. We report an improvement in the electrochemical performance of MoS2/multiwalled carbon nanotubes (MWCNT) nanohybrid and intensively explored its performance in symmetric and asymmetric supercapacitor (ASC) assembly. The symmetric assembly of MoS2/MWCNT exhibits capacitance of around 274.63 F g−1 at 2 A g−1 with higher specific energy/power outputs (20.70 Wh kg−1/1.49 kW kg−1) as compared to the supercapacitor based on pristine MoS2 (5.82 Wh kg−1/1.07 kW kg−1). On the other hand, a unique all-carbon-based ASC assembled with MoS2/MWCNT and VSe2/MWCNT composite with K2SO4 as electrolyte delivers the highest energy density of 32.18 Wh kg−1 at a power density of 1.121 kW kg−1 with exceptional cycling stability and excellent retention of about 98.43% even after 5000 cycles. These outstanding results demonstrate the excellent electrochemical properties of both symmetric and asymmetric systems with high energy density and performance, which further enable them to be a potential candidate for supercapacitor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.