The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology.
Here we report the discovery of oncogenic mutations in the Hedgehog and mitogen-activated protein kinase (MAPK) pathways in over 80% of ameloblastomas, locally destructive odontogenic tumors of the jaw, by genomic analysis of archival material. Mutations in SMO (encoding Smoothened, SMO) are common in ameloblastomas of the maxilla, whereas BRAF mutations are predominant in tumors of the mandible. We show that a frequently occurring SMO alteration encoding p.Leu412Phe is an activating mutation and that its effect on Hedgehog-pathway activity can be inhibited by arsenic trioxide (ATO), an anti-leukemia drug approved by the US Food and Drug Administration (FDA) that is currently in clinical trials for its Hedgehog-inhibitory activity. In a similar manner, ameloblastoma cells harboring an activating BRAF mutation encoding p.Val600Glu are sensitive to the BRAF inhibitor vemurafenib. Our findings establish a new paradigm for the diagnostic classification and treatment of ameloblastomas.
Gastrointestinal stromal tumors (GIST) occur primarily in the wall of the intestine and are characterized by activating mutations in the receptor tyrosine kinases genes KIT or PDGFRA. The diagnosis of GIST relies heavily on the demonstration of KIT/CD117 protein expression by immunohistochemistry. However, KIT expression is absent in approximately 4% to 15% of GIST and this can complicate the diagnosis of GIST in patients who may benefit from treatment with receptor tyrosine kinase inhibitors. We previously identified DOG1/TMEM16A as a novel marker for GIST using a conventional rabbit antipeptide antiserum and an in situ hybridization probe. Here, we describe 2 new monoclonal antibodies against DOG1 (DOG1.1 and DOG1.3) and compare their staining profiles with KIT and CD34 antibodies on 447 cases of GIST. These included 306 cases with known mutational status for KIT and PDGFRA from a molecular consultation service. In addition, 935 other mesenchymal tumors and 432 nonsarcomatous tumors were studied. Both DOG1 antibodies showed high sensitivity and specificity for GIST, with DOG1.1 showing some advantages. This antibody yielded positive staining in 370 of 425 (87%) scorable GIST, whereas CD117 was positive in 317 of 428 (74%) GIST and CD34 in 254 of 430 (59%) GIST. In GIST with mutations in PDGFRA, 79% (23/29) showed DOG1.1 immunoreactivity while only 9% (3/32) and 27% (9/33) stained for CD117 and CD34, respectively. Only 1 of 326 (0.3%) leiomyosarcomas and 1 of 39 (2.5%) synovial sarcomas among the 935 soft tissue tumors examined showed positive immunostaining for DOG1.1. In addition, DOG1.1 immunoreactivity was seen in fewer cases of carcinoma, melanoma, and seminoma as compared with KIT.
Background Adenoid cystic carcinoma is a locally aggressive salivary gland neoplasm which has a poor long term prognosis. A chromosomal translocation involving the genes encoding the transcription factors MYB and NFIB has been recently discovered in these tumors. Methods MYB translocation and protein expression was studied in 37 adenoid cystic carcinomas, 112 other salivary gland neoplasms, and 409 non salivary gland neoplasms by FISH and immunohistochemistry. MYB translocation and expression status in adenoid cystic carcinoma was correlated with clinicopathologic features including outcome, with a median follow up of 77.1 months (range: 23.2–217.5) for living patients. Results A balanced translocation between MYB and NFIB is present in 49% of adenoid cystic carcinomas but is not identified in other salivary gland tumors or non-salivary gland neoplasms. There is no apparent translocation of MYB in 35% of the cases. Strong Myb immunostaining is very specific for adenoid cystic carcinomas but is only present in 65% of all cases. Interestingly, Myb immunostaining is confined to the basal cell component though the translocation is present in all the cells. Neoplasms with MYB translocation demonstrate a trend towards higher local relapse rates, but the results are not statistically significant with current case numbers. Conclusions MYB translocation and expression are useful diagnostic markers for a subset of adenoid cystic carcinomas. The presence of the translocation may be indicative of local aggressive behavior but a larger cohort may be required to demonstrate statistical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.