A solid sorbent for carbon dioxide capture was developed on the basis of montmorillonite nanoclay, which is a low-cost and easily available bulk material. This high specific surface area, platelet-like nanoclay with hydroxyl groups on edges was treated with aminopropyltrimethoxysilane and polyethylenimine to provide sites for CO2 capture. CO2 sorption tests showed fast kinetics and capture capacities as high as 7.5 wt % at atmospheric pressure and about 17 wt % at 2.07 MPa pressure in the temperature range of 75–85 °C. The regeneration of these nanoclays can be achieved using nitrogen at 100 °C or CO2 (dry or humid) at 155 °C as the sweep gases. Furthermore, pressure swing operation, employing vacuum at 85 °C, is also effective in regenerating the sorbent. This work shows that amine-modified montmorillonite nanoclay has the potential to provide a high-performing solid sorbent for CO2 capture.
Background Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. Methods Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts’ to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. Results Our analysis of byproducts’ chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. Conclusions Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. General significance The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials.
Nanoclays' functionalization with organic modifiers increases their individual barrier properties, thermal stability, and mechanical properties and allows for ease of implementation in food packaging materials or medical devices. Previous reports have shown that, while organic modifiers integration between the layered mineral silicates leads to nanoclays with different degrees of hydrophobicity that become easily miscible in polymers, they could also pose possible effects at inhalation or ingestion routes of exposure. Through a systematic analysis of three organically modified and one pristine nanoclay, we aimed to relate for the first time the physical and chemical characteristics, determined via microscopical and spectroscopical techniques, with the potential of these nanoclays to induce deleterious effects in in vitro cellular systems, i.e. in immortalized and primary human lung epithelial cell lines. To derive information on how functionalization could lead to toxicological profiles throughout nanoclays' life cycle, both as-received and thermally degraded nanoclays were evaluated. Our analysis showed that the organic modifiers chemical composition influenced both the physical and chemical characteristics of the nanoclays as well as their toxicity. Overall, when cells were exposed to nanoclays with organic modifiers containing bioreactive groups, they displayed lower cellular numbers as well more elongated cellular morphologies relative to the pristine nanoclay and the nanoclay containing a modifier with long carbon chains. Additionally, thermal degradation caused loss of the organic modifiers as well as changes in size and shape of the nanoclays, which led to changes in toxicity upon exposure to our model cellular systems. Our study provides insight into the synergistic effects of chemical composition, size, and shape of the nanoclays and their toxicological profiles in conditions that mimic exposure in manufacturing and disposal environments, respectively, and can help aid in safe-by-design manufacturing of nanoclays with user-controlled functionalization and lower toxicity levels when food packaging applications are considered.
Organomodified nanoclays (ONCs) are increasingly used as filler materials to improve nanocomposite strength, wettability, flammability, and durability. However, pulmonary risks associated with exposure along their chemical lifecycle are unknown. This study's objective was to compare pre- and post-incinerated forms of uncoated and organomodified nanoclays for potential pulmonary inflammation, toxicity, and systemic blood response. Mice were exposed via aspiration to low (30 μg) and high (300 μg) doses of preincinerated uncoated montmorillonite nanoclay (CloisNa), ONC (Clois30B), their respective incinerated forms (I-CloisNa and I-Clois30B), and crystalline silica (CS). Lung and blood tissues were collected at days 1, 7, and 28 to compare toxicity and inflammation indices. Well-dispersed CloisNa caused a robust inflammatory response characterized by neutrophils, macrophages, and particle-laden granulomas. Alternatively, Clois30B, I-Clois30B, and CS high-dose exposures elicited a low grade, persistent inflammatory response. High-dose Clois30B exposure exhibited moderate increases in lung damage markers and a delayed macrophage recruitment cytokine signature peaking at day 7 followed by a fibrotic tissue signature at day 28, similar to CloisNa. I-CloisNa exhibited acute, transient inflammation with quick recovery. Conversely, high-dose I-Clois30B caused a weak initial inflammatory signal but showed comparable pro-inflammatory signaling to CS at day 28. The data demonstrate that ONC pulmonary toxicity and inflammatory potential relies on coating presence and incineration status in that coated and incinerated nanoclay exhibited less inflammation and granuloma formation than pristine montmorillonite. High doses of both pre- and post-incinerated ONC, with different surface morphologies, may harbor potential pulmonary health hazards over long-term occupational exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.