Social network and microblogging sites such as Twitter are widespread amongst all generations nowadays where people connect and share their feelings, emotions, pursuits etc. Depression, one of the most common mental disorder, is an acute state of sadness where person loses interest in all activities. If not treated immediately this can result in dire consequences such as death. In this era of virtual world, people are more comfortable in expressing their emotions in such sites as they have become a part and parcel of everyday lives. The research put forth thus, employs machine learning classifiers on the twitter data set to detect if a person’s tweet indicates any sign of depression or not.
Sybil accounts are swelling in popular social networking sites such as Twitter, Facebook etc. owing to cheap subscription and easy access to large masses. A malicious person creates multiple fake identities to outreach and outgrow his network. People blindly trust their online connections and fall into trap set up by these fake perpetrators. Sybil nodes exploit OSN’s ready-made connectivity to spread fake news, spamming, influencing polls, recommendations and advertisements, masquerading to get critical information, launching phishing attacks etc. Such accounts are surging in wide scale and so it has become very vital to effectively detect such nodes. In this research a new classifier (combination of Sybil Guard, Twitter engagement rate and Profile statistics analyser) is developed to combat such Sybil nodes. The proposed classifier overcomes the limitations of structure based, machine learning based and behaviour-based classifiers and is proven to be more accurate and robust than the base Sybil guard algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.