Gravitational Search Algorithm (GSA) is a recent metaheuristic algorithm inspired by Newton's law of gravity and law of motion. In this search process, position change is based on the calculation of step size which depends upon a constant namely, Gravitational Constant (G). G is an exponentially decreasing function throughout the search process. Further, inspite of having different masses, the value of G remains same for each agent, which may cause inappropriate step size of agents for the next move, and thus leads the swarm towards stagnation or sometimes skipping the true optima.To overcome stagnation, we first propose a gravitational constant having different scaling characteristics for different phase of the search process. Secondly, a dynamic behavior is introduced in this proposed gravitational constant which varies according to the fitness of the agents. Due to this behavior, the gravitational constant will be different for every agent based on its fitness and thus will help in controlling the acceleration and step sizes of the agents which further improve exploration and exploitation of the solution search space.The proposed strategy is tested over 23 well-known classical benchmark functions and 11 shifted and biased benchmark functions. Various statistical analyses and a comparative study with original GSA, Chaos-based GSA (CGSA), Bio-geography Based Optimization (BBO) and DBBO has been carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.