The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. The archetypical blazar BL Lacertae provided a unique opportunity to study spectral variations during an extended strong flaring episode from 2020 to 2021. During its brightest γ-ray state, the observed flux (0.1–300 GeV) reached up to $2.15\, \times \, 10^{-5}\, \rm {ph\, cm^{-2}\, s^{-1}}$, with sub-hour-scale variability. The synchrotron hump extended into the X-ray regime showing a minute-scale flare with an associated peak shift of inverse-Compton hump in γ-rays. In shock acceleration models, a high Doppler factor value >100 is required to explain the observed rapid variability, change of state, and γ-ray peak shift. Assuming particle acceleration in minijets produced by magnetic reconnection during flares, on the other hand, alleviates the constraint on required bulk Doppler factor. In such jet-in-jet models, observed spectral shift to higher energies (towards TeV regime) and simultaneous rapid variability arises from the accidental alignment of a magnetic plasmoid with the direction of the line of sight. We infer a magnetic field of ∼0.6 G in a reconnection region located at the edge of broad-line region (∼0.02 pc). The scenario is further supported by lognormal flux distribution arising from merging of plasmoids in reconnection region.
The γ-ray emission from flat-spectrum radio quasars (FSRQs) is thought to be dominated by the inverse Compton scattering of the external sources of photon fields, e.g., accretion disk, broad-line region (BLR), and torus. FSRQs show strong optical emission lines and hence can be a useful probe of the variability in BLR output, which is the reprocessed disk emission. We study the connection between the optical continuum, Hγ line, and γ-ray emissions from the FSRQ PKS 1222+216, using long-term (∼2011–2018) optical spectroscopic data from Steward Observatory and γ-ray observations from Fermi Large Area Telescope (LAT). We measured the continuum (F C,opt) and Hγ (F Hγ ) fluxes by performing a systematic analysis of the 6029–6452 Å optical spectra. We observed stronger variability in F C,opt than F Hγ , an inverse correlation between the Hγ equivalent width and F C,opt, and a redder-when-brighter trend. Using discrete cross-correlation analysis, we found a positive correlation (DCF ∼ 0.5) between the F γ‐ray>100 MeV and F C,opt (6024–6092 Å) light curves with a time lag consistent with zero at the 2σ level. We found no correlation between the F γ‐ray>100 MeV and F Hγ light curves, probably dismissing the disk contribution to the optical and γ-ray variability. The observed strong variability in the Fermi-LAT flux and F γ‐ray>100 MeV − F C,opt correlation could be due to the changes in the particle acceleration at various epochs. We derived the optical-to-γ-ray spectral energy distributions during the γ-ray flaring and quiescent epochs that show a dominant disk component with no variability. Our study suggests that the γ-ray emission zone is likely located at the edge of the BLR or in the radiation field of the torus.
Context. Blazars, a class of active galaxies whose jets are relativistic and collimated flows of plasma directed along the line of sight, are prone to a slew of magnetohydrodynamic (MHD) instabilities. These jets show characteristic multi-wavelength and multi-timescale variabilities. Aims. We aim to study the interplay of radiation and particle acceleration processes in regulating the multi-band emission and variability signatures from blazars. In particular, the goal is to decipher the impact of shocks arising due to MHD instabilities in driving the long-term variable emission signatures from blazars. Methods. To this end, we performed relativistic MHD (RMHD) simulations of a representative section of a blazar jet. The jet was evolved using a hybrid Eulerian-Lagrangian framework to account for radiative losses due to synchrotron process as well as particle acceleration due to shocks. Additionally, we incorporated and validated radiative losses taking into consideration the external Compton (EC) process that is relevant for blazars. We further compared the effects of different radiation mechanisms through numerical simulation of 2D slab jet as a validation test. Finally, we carried out a parametric study to quantify the effect of magnetic fields and external radiation field characteristics by performing 3D simulations of a plasma column. The synthetic light curves and spectral energy distribution (SEDs) were analyzed to qualitatively understand the impact of instability driven shocks. Results. We observed that shocks produced with the evolution of instabilities give rise to flaring signatures in the high-energy band. The impact of such shocks is also evident from the instantaneous flattening of the synchrotron component of the SEDs. At later stages, we observed the transition in X-ray emission from the synchrotron process to that dominated by EC. The inclusion of the EC process also gives rise to γ-ray emission and shows signatures of mild Compton dominance that is typically seen in low-synchrotron peaked blazars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.