Summary The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
The noteworthy beneficiary to date in nanotechnology is cancer management. Nanorobots are developed as the result of advancements in the nanostructure, robotics, healthcare, and computer systems. These devices at the nanoscale level are beneficial in the prevention, diagnosis, and treatment of various health conditions notably cancer. Though these structures have distinct potentialities, the usage of inorganic substances in their construction can affect their performance and can cause health issues in the body. To overcome this, naturally inspired substances are incorporated in the fabrication process of nanorobots termed biomimetic nanorobots that can overcome the immunological responses and reduce the side effects with effective functionalization. These biomimetic nanorobots can widen the opportunities in cancer imaging and therapy. Herein, an up-to-date review of biomimetic nanorobots along with their applications in cancer management is provided. Furthermore, the safety issues and future directions of biomimetic nanorobots to achieve clinical translation are also stated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.