This work reports an eco-friendly synthesis of silver nanoparticles (AgNPs) using endophytic bacteria, Cytobacillus firmus isolated from the stem bark of Terminalia arjuna. The synthesis of AgNPs was confirmed by visual observation as a change in color of the bacterial solution impregnated with silver. Further, the morphology of the AgNPs, average size, and presence of elemental silver were characterized by UV–Visible spectroscopy, scanning electron microscopy, and dynamic light scattering spectroscopy. The roles of endophytic secondary metabolites in the metal reduction, stabilization, and capping of silver nanoparticles were studied by qualitative FTIR spectral peaks. The antimicrobial ability of AgNPs was evaluated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and pearl millet blast disease-causing fungi (Magnoporthe grisea). The biosynthesized AgNPs showed good antibacterial and antifungal activities. AgNPs effectively inhibited the bacterial growth in a dose-dependent manner and presented as good antifungal agents towards the growth of Magnoporthe grisea.
At present, there is a vital need for river water purification by developing new approaches to eliminate bacterial biofilms, textile dyes, and Low-Density Polyethylene (LDPE) plastics that pose severe threats to human and environmental health. The current work put forward the construction of an eco-friendly green strategy to synthesize zinc oxide nanoparticles (ZnO NPs) using areca nut (Areca catechu) extract and their application to tackle the challenges in water purification. Prepared biogenic NPs were characterized by X-ray diffraction analysis (XRD), Fourier Transform Infra-Red (FT-IR), Energy Diffraction Spectroscopy (EDS), Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM) analysis, confirmed the spherical shape in 20 nm and UV-vis spectroscopy. The characteristic absorption band exhibited at 326 nm confirmed the formation of ZnO NPs using UV-vis spectroscopy. Among all the tested bacterial pathogens, the E. coli at 50 µg/mL concentration showed the highest inhibition of biofilm activity, followed by the highest growth curve, cellular leakage, and potassium ion efflux. The ZnO NPs observed with photo-degradation of Rhodamine-B (Rh-B), Methylene Blue (MB), and Nigrosine dyes under sunlight irradiation at different time intervals. Finally, the photocatalytic activity of LDPE-ZnO NPs nanocomposite film showed the highest degradation under solar light irradiation were confirmed through photo-induced weight loss, SEM, FTIR, and MALDI-TOF analysis. This study demonstrates ZnO NPs exhibit efficacy against biofilm formation, degradation of photocatalytic textile dyes, and low-density LDPE film under solar light irradiation, which can be a step forward in water purification.
Excoecaria agallocha Linn. the blinding mangrove tree of historical significance, is well known for its curative properties. In this investigation, crude hexane extract from the dried roots of E. agallocha inhibited 50% of the growth of third instar larvae of Culex quinquefasciatus Say. within 24 h (LC(50): 315 ppm). SiO(2) (60-120) column chromatography purification of the extract yielded four fractions, of which fractions 3 (LC(50): 61.2 ppm) and 4 (LC(50): 74.5 ppm) exhibited 100% larvicidal activity within 18-24 h. Bioactive fraction 3 contained sub-fractions R1 and R2. R1 was characterised by (1)H-NMR, (13)C-NMR and FAB mass spectrometry techniques as the acyclic hydrocarbon n-triacontane (C(30)H(62)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.