SummaryNatural genetic transformation in Streptococcus pneumoniae is controlled in part by a quorum-sensing system mediated by a peptide pheromone called competence-stimulating peptide (CSP), which acts to coordinate transient activation of genes required for competence. To characterize the transcriptional response and regulatory events occurring when cells are exposed to competence pheromone, we constructed DNA microarrays and analysed the temporal expression profiles of 1817 among the 2129 unique predicted open reading frames present in the S. pneumoniae TIGR4 genome (84%). After CSP stimulation, responsive genes exhibited four temporally distinct expression profiles: early, late and delayed gene induction, and gene repression. At least eight early genes participate in competence regulation including comX , which encodes an alternative sigma factor. Late genes were dependent on ComX for CSPinduced expression, many playing important roles in transformation. Genes in the delayed class (third temporal wave) appear to be stress related. Genes repressed during the CSP response include ribosomal protein loci and other genes involved in protein synthesis. This study increased the number of identified CSP-responsive genes from approximately 40 to 188. Given the relatively large number of induced genes (6% of the genome), it was of interest to determine which genes provide functions essential to transformation. Many of the induced loci were subjected to gene disruption mutagenesis, allowing us to establish that among 124 CSP-inducible genes, 67 were individually dispensable for transformation, whereas 23 were required for transformation.
Despite similarities between tumor-initiating cells with stem-like properties (TICs) and normal neural stem cells, we hypothesized that there may be differences in their differentiation potentials. We now demonstrate that both bone morphogenetic protein (BMP)-mediated and ciliary neurotrophic factor (CNTF)-mediated Jak/STAT-dependent astroglial differentiation is impaired due to EZH2-dependent epigenetic silencing of BMP receptor 1B (BMPR1B) in a subset of glioblastoma TICs. Forced expression of BMPR1B either by transgene expression or demethylation of the promoter restores their differentiation capabilities and induces loss of their tumorigenicity. We propose that deregulation of the BMP developmental pathway in a subset of glioblastoma TICs contributes to their tumorigenicity both by desensitizing TICs to normal differentiation cues and by converting otherwise cytostatic signals to proproliferative signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.