Silicon nanocrystal (SiNC)-based thin-film devices have been fabricated, where the idea of scaling down of channel length was implemented in such a way that very few SiNCs can be fitted inside the channel in the channel length direction in order to decrease the number of barriers to increase electrical conductivity. In this study, we have demonstrated the scaling down of channel length to 20 nm in order to reduce the number of barriers provided by each of the SiNCs, which are fabricated using a very high-frequency (VHF) plasma-enhanced chemical vapor deposition (CVD) system with a diameter of 10±1 nm. A high electrical conductivity has been achieved by optimizing channel length. In addition, we have demonstrated the surface nitridation of SiNCs to protect the highly reactive surface of SiNCs from further natural oxidization and successfully suppressed the degradation of transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.