Class III plant peroxidase (POX), a plant-specific oxidoreductase, is one of the many types of peroxidases that are widely distributed in animals, plants and microorganisms. POXs exist as isoenzymes in individual plant species, and each isoenzyme has variable amino acid sequences and shows diverse expression profiles, suggesting their involvement in various physiological processes. Indeed, studies have provided evidence that POXs participate in lignification, suberization, auxin catabolism, wound healing and defense against pathogen infection. Little, however, is known about the signal transduction for inducing expression of the pox genes. Recent studies have provided information on the regulatory mechanisms of wound- and pathogen-induced expression of some pox genes. These studies suggest that pox genes are induced via different signal transduction pathways from those of other known defense-related genes.
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.
Proteomics is a useful analytical approach for investigating crop responses to stress. Recent remarkable advances in proteomic techniques allow for the identification of a wider range of proteins than was previously possible. The application of proteomic techniques to clarify the molecular mechanisms underlying crop responses to flooding stress may facilitate the development of flood tolerant crops. Flooding is an environmental stress found worldwide and may increase in frequency due to changes in global climate. Waterlogging resulting from flooding causes significant reductions in the growth and yield of several crops. Transient flooding displaces gases in soil pores and often causes hypoxia in plants grown on land with poor drainage. Changes in protein expression and post-translational modification of proteins occur as plants activate their defense system in response to flooding stress. In this review, we discuss the contributions that proteomic studies have made toward increasing our understanding of the well-organized cellular response to flooding in soybean and other crops. The biological relevance of the proteins identified using proteomic techniques in regard to crop stress tolerance will be discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.