The dependence of the beam intensity and the mean droplet size on the source stagnation pressure and temperature are studied via mass spectroscopy and laser induced fluorescence of embedded phthalocyanine molecules. In comparison to a cw beam the pulsed source for the same pressure and temperature has a factor of 100 higher flux and the droplet sizes are an order of a magnitude larger.
The laser-induced fluorescence (LIF) excitation spectra of free base phthalocyanine (Pc), Mg-Pc, and Zn-Pc molecules in superfluid helium droplets at T=0.38 K have been studied. The spectra reveal the rich vibronic structure of the S(1)<--S(0) electronic transitions. The band origins of the transitions consist of zero phonon lines accompanied by phonon wings, which originate from simultaneous electronic excitation of the molecule and excitation of the collective modes of the helium surrounding it. The phonon wings have discrete structures suggesting localization of some helium atoms in the neighborhood of the molecules. Zero phonon lines of Mg-Pc and Zn-Pc molecules are split into three components, which are separated by 0.2-0.4 cm(-1). Possible mechanism of splitting involves static or dynamic Jahn-Teller interaction of metal-phthalocyanine molecules in the twofold degenerate S(1)((1)E(u)) state with the helium shell.
The IR spectra of complexes of water with nitrogen molecules in the range of the symmetric (nu(1)) and antisymmetric (nu(3)) bands of H(2)O have been studied in helium droplets. The infrared intensities of the nu(3) and nu(1) modes of H(2)O were found to be larger by factors of 1.3 and 2, respectively, in the N(2)-H(2)O complexes. These factors are smaller than those obtained in recent theoretical calculations. The conformation of the N(2)-H(2)O complex was estimated. Spectra and IR intensities of the (N(2))(2)-H(2)O and N(2)-(H(2)O)(2) complexes were also obtained and their structures are discussed.
In this paper, we describe an experiment which was conducted to explore the macro-coherent amplification mechanism using a two-photon emission process from the first vibrationally-excited state of para-hydrogen molecule. Large coherence in the initial state was prepared by the adiabatic Raman method, and the lowest Stokes sideband was used as a trigger field. We observed the coherent two-photon emission consistent with the expectation of the Maxwell-Bloch equation derived for the process, whose rate is larger by many orders of magnitude than that of the spontaneous emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.