The relationship between brain structure and complex behavior is governed by large‐scale neurocognitive networks. The availability of a noninvasive technique that can visualize the neuronal projections connecting the functional centers should therefore provide new keys to the understanding of brain function. By using high‐resolution three‐dimensional diffusion magnetic resonance imaging and a newly designed tracking approach, we show that neuronal pathways in the rat brain can be probed in situ. The results are validated through comparison with known anatomical locations of such fibers. Ann Neurol 1999;45:265–269
Brain registration to a stereotaxic atlas is an effective way to report anatomic locations of interest and to perform anatomic quantification. However, existing stereotaxic atlases lack comprehensive coordinate information about white matter structures. In this paper, white matter specific atlases in stereotaxic coordinates are introduced. As a reference template, the widely-used ICBM-152 was used. The atlas contains fiber orientation maps and hand-segmented white matter parcellation maps based on diffusion tensor imaging (DTI). Registration accuracy by linear and nonlinear transformation was measured, and automated template-based white matter parcellation was tested. The results showed high correlation between the manual ROI-based and the automated approaches for normal adult populations. The atlases are freely available and believed to be a useful resource as a target template and for automated parcellation methods.
Two- and three-dimensional (3D) white matter atlases were created on the basis of high-spatial-resolution diffusion tensor magnetic resonance (MR) imaging and 3D tract reconstruction. The 3D trajectories of 17 prominent white matter tracts could be reconstructed and depicted. Tracts were superimposed on coregistered anatomic MR images to parcel the white matter. These parcellation maps were then compared with coregistered diffusion tensor imaging color maps to assign visible structures. The results showed (a). which anatomic structures can be identified on diffusion tensor images and (b). where these anatomic units are located at each section level and orientation. The atlas may prove useful for educational and clinical purposes.
Tractography based on diffusion tensor imaging (DTI) allows visualization of white matter tracts. In this study, protocols to reconstruct eleven major white matter tracts are described. The protocols were refined by several iterations of intra-and inter-rater measurements and identification of sources of variability. Reproducibility of the established protocols was then tested by raters who did not have previous experience in tractography. The protocols were applied to a DTI database of adult normal subjects to study size, fractional anisotropy (FA), and T 2 of individual white matter tracts. Distinctive features in FA and T 2 were found for the corticospinal tract and callosal fibers. Hemispheric asymmetry was observed for the size of white matter tracts projecting to the temporal lobe. This protocol provides guidelines for reproducible DTI-based tract-specific quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.