Cochlear fibrocytes play important roles in normal hearing as well as in several types of sensorineural hearing loss attributable to inner ear homeostasis disorders. Recently, we developed a novel rat model of acute sensorineural hearing loss attributable to fibrocyte dysfunction induced by a mitochondrial toxin. In this model, we demonstrate active regeneration of the cochlear fibrocytes after severe focal apoptosis without any changes in the organ of Corti. To rescue the residual hearing loss, we transplanted mesenchymal stem cells into the lateral semicircular canal; a number of these stem cells were then detected in the injured area in the lateral wall. Rats with transplanted mesenchymal stem cells in the lateral wall demonstrated a significantly higher hearing recovery ratio than controls. The mesenchymal stem cells in the lateral wall also showed connexin 26 and connexin 30 immunostaining reminiscent of gap junctions between neighboring cells. These results indicate that reorganization of the cochlear fibrocytes leads to hearing recovery after acute sensorineural hearing loss in this model and suggest that mesenchymal stem cell transplantation into the inner ear may be a promising therapy for patients with sensorineural hearing loss attributable to degeneration of cochlear fibrocytes. Mammalian cochlear fibrocytes of the mesenchymal nonsensory regions play important roles in the cochlear physiology of hearing, including the transport of potassium ions to generate an endocochlear potential in the endolymph that is essential for the transduction of sound by hair cells.1-3 It has been postulated that a potassium recycling pathway toward the stria vascularis via fibrocytes in the cochlear lateral wall is critical for proper hearing, although the exact mechanism has not been definitively determined.2 One candidate model for this ion transport system consists of an extracellular flow of potassium ions through the scala tympani and scala vestibuli and a transcellular flow through the organ of Corti, supporting cells, and cells of the lateral wall.4,5 The fibrocytes within the cochlear lateral wall are divided into type I to V based on their structural features, immunostaining patterns, and general location.5 Type II, type IV, and type V fibrocytes resorb potassium ions from the surrounding perilymph and from outer sulcus cells via the Na,KATPase. The potassium ions are then transported to type I fibrocytes, strial basal cells, and intermediate cells through gap junctions and are secreted into the intrastrial space through potassium channels. The secreted potassium ions are incorporated into marginal cells by the Na,K-ATPase and the Na-K-Cl co-transporter, and are finally secreted into the endolymph through potassium channels.Degeneration and alteration of the cochlear fibrocytes have been reported to cause hearing loss without any other changes in the cochlea in the Pit-Oct-Unc (POU)-domain transcription factor Brain-4 (Brn-4)-deficient mouse 6 and the otospiralin-deficient mouse.3 Brn-4 is the gene responsible f...
Wooden and rubber fruit models of different shapes, colors, and sizes were hung in fruiting coffee trees. Spheres (7.5 cm in diam) were much more attractive to Ceratttis capitata (Wiedemann) than cubes, cylinders, or rectangles of equivalent surface area. Black and yellow were the most attractive of eight colors, and white and grey were the least attractive. When an array of sphere sizes were tested, the attraction to flies increased as the size of yellow spheres increased from 1.5 to 18 cm diam. Trimedlure (tert-butyl 4(5)-chloro-2-methylcyclohexanecarboxylate) enhanced the attraction for males when added to 20.3 • 25.4-cm yellow rectangles and to 7.5-cm black spheres.Both chemical and physical stimuli attract tephritid flies to host plants (Prokopy, 1977a). After arrival on plants, Rhagoletis pomonella (Walsh) and Dacus oleae
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.