The arsenic bound in holocellulose, a precursor of humic substances extracted from organic contaminated sediments, was investigated using XANES (x-ray adsorption near-edge structure) and EXAFS (extended x-ray absorption fine structure) with fluorescence mode. The most abundant arsenic bound in holocellulose was As-O in the first coordination sphere. Sulphur and carbon were also found in a neighbouring coordination shell around arsenic. The arsenic oxidation state was judged to be As (III) by As K edge XANES spectra as a shift to higher absorption edge energy with the increasing formal oxidation state. This arsenic speciation and bounding were well matched with biochemical mechanisms of arsenic absorption into plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.