The mangosteen fruit has a characteristic thick skin, so it is difficult to know the condition of the flesh. Farmer can only know damage to the fruit flesh after the fruit skin had opened. Detection of the quality of the mangosteen flesh can be detected using a sensor capable of penetrating the thickness of the mangosteen rind. Flesh quality detection is carried out based on the S21 value (attenuation of mangosteen flesh value) using a portable device equipped with a sensor and capable of emitting microwaves. The S21 value of the fruit's flesh was measured using a spiral resonator that functioned as a sensor. The prototype device consists of an oscillator circuit, a power splitter, and a phase detector with 2507 MHz. Fruit flesh had divided into two conditions: damaged for fruit flesh with yellow sap or Translucent Flesh Disorder, and suitable condition for clean fruit flesh. The results showed that the fruit flesh had an average S21 value of 7.041 dB for damaged flesh and 6.007 dB for good flesh condition. The difference in the value of S21 had used as a reference for detecting the shape of the fruit flesh, with the detection threshold calculated by the Support Vector Machine, resulting in a threshold value of 6.712 dB.
Gedung Madrasah Tsanawiyah (MTs) Al Mubasysyirun yang berlokasi di Pemenang Timur, Kabupaten Lombok Utara, Nusa Tenggara Barat merupakan salah satu bangunan terdampak gempa bumi Lombok yang terjadi pada bulan Agustus 2018 silam. Akibat gempa tersebut hampir seluruh bangunan madrasah rusak berat. Setelah masa tanggap darurat selesai gedung madrasah dibangun kembali. Termasuk listrik yang disuplai oleh PLN. Namun dalam hal penyediaan listrik masih terdapat kekurangan yaitu kurangnya kontinuitas pelayanan, dimana seringnya terjadi pemadaman listrik. sementara kegiatan belajar mengajar di madrasah sedang berlangsung sehingga dirasa cukup mengganggu. Selain itu MTs juga berencana mengikuti ujian nasional berbasis komputer sehingga pasokan listrik ketika ujian tidak boleh terhenti. Masalah ketidaksinambungan pasokan listrik PLN tersebut perlu diatasi melalui penyediaan suatu sumber listrik cadangan yang akan menggantikan pasokan listrik ketika PLN padam. Listrik cadangan yang yang diusulkan adalah berbasis Unintruptable Power Supply (UPS) yang mempunyai berbagai kelebihan. Kelebihan tersebut adalah waktu pindah yang cepat dan lebih senyap. Sistem UPS tersebut, terdiri dari serangkaian baterai/aki, inverter dan pengisi baterai. Ketika listrik PLN dalam kondisi menyala, maka sebagian energi listrik disimpan dalam baterai melalui suatu modul pengisi baterai. Ketika listrik dari PLN padam, energi listrik yang tersimpan dalam baterai tersebut akan disalurkan ke beban melalui suatu mekanisme saklar pindah. Dengan kata lain beban yang sebelumnya disangga oleh listrik PLN akan segera dipindah dan disangga oleh UPS ketika listrik PLN padam. Berbagai macam cara instalasi UPS yang paling umum adalah UPS dihubungkan ke salah satu stop kontak. Namun cara ini hanya efektif bila beban yang disangga hanya sedikit, misalnya 1 buah komputer. Untuk sekala beban yang lebih luas yaitu seluruh beban di gedung sekolah maka UPS perlu dipasang di tiap sentral listrik (papan hubung bagi). Oleh sebab itu umumnya perlu modifikasi jaringan kelistrikan suatu gedung sekolah. Adapun hal-hal yang perlu diperhatikan dalam penentuan lokasi UPS: 1) kedekatan dengan sentral/MCB 2) sirkulasi udara 3) keamanan. Dari Uji coba, didapatkan bahwa sistem UPS yang telah dipasang memenuhi beberapa kriteria yang diharapkan antara lain: 1) kemudahan perawatan 2) kemudahan pemasangan 3) memenuhi standar keamanan dan 4) biaya instalasi murah. Manfaat kegiatan PPM diantarannya: 1) mitra mendapatkan sumber listrik cadangan yang bermanfaat bilamana listrik PLN padam, khususnya untuk persiapan ujian yang berbasis komputer 2) menghemat biaya pembelian BBM dan perawatan daripada menggunakan genset 3) mendapatkan sumber listrik cadangan yang senyap dan tidak mengganggu aktifitas belajar mengajar.
Songket is a woven fabric created by prying the threads and adding more weft to create an embossed decorative pattern on a cotton or silk thread woven background. While songket from many places share similar motifs, when examined closely, the motifs of songket from various regions differ, one of which is in the Province of West Nusa Tenggara, namely Lombok Island. To assist the public in recognizing the many varieties of Lombok songket motifs, the researchers used digital image processing technology, including pattern recognition, to distinguish the distinctive patterns of Lombok songket. The Gray Level Co-occurrence Matrix (GLCM) technique and Backpropagation Neural Networks are used to build a pattern identification system to analyze the Lombok songket theme. Before beginning the feature extraction process, the RGB color image has converted to grayscale (grayscale), which is resized. Simultaneously, a Backpropagation Neural Network is employed to classify Lombok songket theme variations. This study used songket motif photos consisting of a sample of 15 songket motifs with the same color theme that was captured eight times, four of which were used as training data and kept in the database. Four additional photos were utilized as test data or data from sources other than the database. When the system’s ability to recognize the pattern of Lombok songket motifs is tested, the maximum average recognition percentage at a 0° angle is 88.33 percent. In comparison, the lowest average recognition percentage at a 90° angle is 68.33 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.