Attempts to create hierarchically structured, uniaxially oriented nanocomposites comprising cellulose nanowhiskers (CNWs), which promise anisotropic mechanical properties, are exceedingly rare. We report here the fabrication of uniaxially‐oriented arrays of microfibers based on poly(ethylene oxide) (PEO) and CNWs by electrospinning. Compared with the neat PEO fibers, the incorporation of CNWs within the fibers increased the storage modulus (E′) of arrays along the fiber axis of the PEO/CNW nanocomposite fibers. Successful incorporation of the CNWs within each of the as‐spun PEO/CNW nanocomposite fibers in the direction parallel to the fiber axis was verified by both scanning and transmission electron microscopy.
Ultra‐thin fibers, consisting of blends of a PPE derivative and polystyrene, with average diameters ranging from 430 to 1 200 nm, were produced by electrospinning. The electrospinnability was significantly improved by adding pyridinium formate to the spinning solution. FT‐IR spectroscopy was used to confirm the composition of the electrospun fibers and their morphology was probed by SEM. The optical properties of the as‐prepared solutions, pristine and annealed fibers, and corresponding spin‐coated and solution‐cast films were investigated by UV‐vis spectroscopy. A comparison of the PL emission spectra revealed aggregation of PPE molecules in the electrospun materials but the extent of aggregation can be reduced if the materials are annealed above the glass transition temperature.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.