The tunable photoluminescent and photocatalytic properties of carbon dots (CDs) via chemical surface modification have drawn increased attention to this emerging class of carbon nanomaterials. Herein, we summarize the advances in CD synthesis and modification, with a focus on surface functionalization, element doping, passivation, and nanocomposite formation with metal oxides, transition metal chalcogenides, or graphitic carbon nitrides. The effects of CD size and functionalization on photocatalytic properties are discussed, along with the photocatalytic applications of CDs in energy conversion, water splitting, hydrogen evolution, water treatment, and chemical degradation. In particular, the enzyme-mimetic and photodynamic applications of CDs for bio-related uses are thoroughly reviewed.
Abstract. Mesoporous silica nanoparticles (MSNs) have been proposed as drug delivery devices for approximately 15 years. The history of in vitro studies has been promising, demonstrating that MSNs have the capability for stimulus-responsive controlled release, good cellular uptake, cell specific targeting, and the ability to carry a variety of cargoes from hydrophobic drug molecules to imaging agents. However, the translation of the in vitro findings to in vivo conditions has been slow. Herein, we review the current state-of-the-art in the use of MSN for systemic drug delivery in vivo and provide critical insight into the future of MSNs as systemic drug delivery devices and directions that should be undertaken to improve their practicality.
The attachment of Histone deacetylase (HDAC) inhibitors via covalent bonds to biocompatible and biodegradable block copolymers provides a new research direction for cancer treatment.
Centella asiatica (L.) Urban extracts are widely used as food, drugs and cosmetics, and the main active compounds are glycosides (madecassoside and asiaticoside) and aglycones (madecassic acid and asiatic acid). Green extraction is an interesting concept that can produce safe and high-quality extracts that use less solvent, time and energy with the environmental friendly. This study investigated the optimum conditions for extracting a triterpenoid glycoside-enriched C. asiatica extract using microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE). Central composite design and response surface methodology (RSM) were used for the experimental design and data analysis. Four-month-old C. asiatica tetraploid plants were selected as the elite raw material containing high amount of triterpenoid glycosides for the extraction experiments, and the triterpenoid content was determined by a validated HPLC method. The results demonstrated that the RSM models and equations were reliable and could predict the optimal conditions to enhance C. asiatica extract yield, glycoside and aglycone amounts. The percent of ethanol was the major factor that had a significant effect on C. asiatica yield and glycoside and aglycone content during MAE and UAE. The maximum triterpenoids content in extract; 7.332 ± 0.386% w/w madecassoside and 4.560 ± 0.153% w/w asiaticoside 0.357 ± 0.013% w/w madecassic acid and 0.209 ± 0.025% w/w asiatic acid were obtained by MAE with 80% ethanol at 100 watts for 7.5 min, whereas the optimal conditions for highest total triterpenoids extraction from dry plant was UAE with 80% ethanol, temperature 48 °C, 50 min enhanced 2.262 ± 0.046% w/w madecassoside, 1.325 ± 0.062% w/w asiaticoside, 0.082 ± 0.009% w/w madecassic acid and 0.052 ± 0.007% w/w asiatic acid as secondary outcome. Moreover, it was found that MAE and UAE consumed energy 59 and 54%, respectively, lower than that of the conventional method, maceration, in term of kilowatt-hour per gram of total triterpenoids. These optimized green conditions could be recommended for C. asiatica extraction for triterpenoid glycoside-enriched extracts production for the pharmaceutical or cosmeceutical industries and triterpenoids quantitative analysis in raw materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.