Data race free (DRF) programs constitute an important class of concurrent programs. In this paper we provide a framework for designing and proving the correctness of data flow analyses that target this class of programs. These analyses are in the same spirit as the "sync-CFG" analysis proposed in earlier literature. To achieve this, we first propose a novel concrete semantics for DRF programs, called L-DRF that is thread-local in nature-each thread operates on its own copy of the data state. We show that abstractions of our semantics allow us to reduce the analysis of DRF programs to a sequential analysis. This aids in rapidly porting existing sequential analyses to sound and scalable analyses for DRF programs. Next, we parameterize L-DRF with a partitioning of the program variables into "regions" which are accessed atomically. Abstractions of the region-parameterized semantics yield more precise analyses for region-race free concurrent programs. We instantiate these abstractions to devise efficient relational analyses for race free programs, which we have implemented in a prototype tool called RATCOP.
Concurrency bugs are notoriously hard to detect and reproduce. Controlled concurrency testing (CCT) techniques aim to offer a solution, where a
scheduler
explores the space of possible interleavings of a concurrent program looking for bugs. Since the set of possible interleavings is typically very large, these schedulers employ heuristics that prioritize the search to “interesting” subspaces. However, current heuristics are typically tuned to specific bug patterns, which limits their effectiveness in practice.
In this paper, we present QL, a learning-based CCT framework where the likelihood of an action being selected by the scheduler is influenced by earlier explorations. We leverage the classical Q-learning algorithm to explore the space of possible interleavings, allowing the exploration to adapt to the program under test, unlike previous techniques. We have implemented and evaluated QL on a set of microbenchmarks, complex protocols, as well as production cloud services. In our experiments, we found QL to consistently outperform the state-of-the-art in CCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.