By the year 2050, the world’s population is predicted to have grown to around 9–10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
The health of the pond environment in shrimp farming is important for sustainable and profitable aquaculture, in which sediment–water interface is the most important influencing area. With this objective, the key parameters of water and sediment at the interface was studied in shrimp ponds with varying salinities and compared with the surface water and soil to understand the variations and the underlying causes. Total ammonia nitrogen and total alkalinity were higher in water at the interface as compared to surface water, whereas pH, nitrite, oxide forms of nitrogen (NO3), phosphorus (PO4) and oxidizing bacteria were observed to be lower. There was no significant difference with respect to macrominerals such as sodium, potassium, calcium and magnesium between water at the interface and surface. These changes are profoundly influenced by the uppermost 1.0‐cm thick sediment layer, where the maximum transition of nutrients takes place with the water column. The outcome of the study highlights the effectiveness of water sampling for metabolites at the interface, which reflects at an early stage any potential deterioration of pond environment, which will help the farmer to initiate timely mitigation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.