Medicinal values of spices and condiments are being revived by biologists through in vitro and in vivo trials providing evidence for its antimicrobial activities. The essential oils and extracts of spices like black pepper, cloves, cinnamon, and nutmeg contain active compounds like piperine, eugenol, cinnamaldehyde, and lignans. Similarly, condiments like coriander, black cumin, turmeric, garlic, and ginger are recognized for constituents like linalool, thymoquinones, curcumin, allicin, and geranial respectively. These act as natural preventive components of several diseases and represent as antioxidants in body cells. Scientists have to investigate the biochemical nature, mode of action, and minimum concentration of administrating active ingredients effectively. This review reports findings of recent research carried out across South Asia and Middle East countries where spices and condiments form chief flavoring components of traditional foods. It narrates the history, myths, and facts people believe in these regions. There may not be scientific explanation but has evidence of cure for centuries.
Tropical soils often contain less soil organic C (SOC) and microbial biomass C (MBC) than temperate soils and, thus, exhibit lower soil fertility. The addition of plant residues and N fertilizers can improve soil fertility, which might be reflected by microbial C use efficiency (CUE) and functional diversity. A 42-day incubation study was carried out, adding leaf litter of the C4 plant finger millet (Eleusine coracana Gaertn.) and inorganic 15N fertilizer. The aim was to investigate amendment effects on CUE and functional diversity in a tropical Nitisol and a temperate Luvisol. At day 42, 28% of the millet litter-derived C (C4) added was mineralised to CO2C4 in the temperate Luvisol and only 18% in the tropical Nitisol, averaging all N treatments. In contrast, none of the different fractions used for calculating CUE values, i.e. CO2C4, MBC4, microbial residue C4, and particulate organic matter C4, differed between the soils in the N0 (no N addition) treatment. CUE values considering microbial residues varied around 0.63, regardless of soil type and sampling day, which needs further evaluation. Millet litter increased autochthonous SOC-derived CO2C3 production, but N addition did not. This priming effect was apparently not caused by N mining. The respiratory response to most substrates added by multi-substrate-induced respiration (MSIR) and, thus, functional diversity was higher in the Luvisol than in the Nitisol. Millet litter had positive and N addition negative effects on the functional diversity of Nitisol, indicating that MSIR is a useful tool for evaluating soil fertility.
Aims Rural-urban dynamics are leading to agricultural intensification practices, which affect microbial ecosystem functions in a soil-specific way. This study aimed to investigate what effects agricultural intensification has on soil microbial communities. Methods The effects of N fertilization level (low and high) and crop type (maize and finger millet) on microbial communities were investigated, using a two-factorial split-plot design, at two fields (irrigated and rainfed) on typical soil types (Nitisol and Acrisol) mimicking an intensification gradient in the rural-urban interface of the Indian Megacity Bangalore. Results The Nitisol had higher pH and clay content than the Acrisol. In combination with irrigation, this led to higher aboveground plant biomass (APB), soil organic carbon (SOC), microbial biomass (MB), fungal ergosterol and microbial necromass. High APB resulted in low total P content, due to P export in APB and high soil C/P and MB-C/P ratios in the Nitisol. Crop type and N fertilization level did not affect microbial parameters in the irrigated Nitisol, whereas crop type affected ergosterol and MBP and N fertilization level affected basal respiration in the rainfed Acrisol. Particulate organic matter (POM) was a major explanatory factor for most microbial parameters in both soils. In the Acrisol, drought reduced metabolic demand, which counteracted negative effects of low pH and clay on the MB. This was indicated by similar metabolic quotients and MBC/SOC ratios in both soils. Conclusions These results indicate the current need for water and high-quality fresh plant inputs to improve the microbial contribution to soil fertility at Bangalore.
Probiotics are dietary supplements containing potentially beneficial bacteria or yeasts. These probiotics promote good health and have therapeutic value. In this regard a study has been conducted to find the effect of probioticated millet mix on cholesterol levels in albino rats. Forty eight male Wistar rats were divided into six groups, all groups showed normal growth. Normal levels of serum hematological and serum values were observed where as Composite Mix Single Probiotic (CMSP) diet showed better results. Reduction in serum cholesterol, triglycerides, VLDL, LDL and improvement in the HDL levels were observed over a period of 45 days in experimental animals. CMSP was found to have good effect when compared to Composite Mix with Mixed Probiotic (CMMP). Hypocholesterolemic effect was observed in rats fed with CMSP diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.