Understanding the factors associated with elevated risks and adverse consequences of traumatic brain injury (TBI) is an integral part of developing preventive measures for TBI. Brain injury outcomes differ based on one’s sex (biological characteristics) and gender (social characteristics reflecting norms and relationships), however, whether it is sex or gender that drives differences in early (30-day) mortality and discharge location post-TBI event are unknown. In the absence of gender variable in existing data, we developed a method for “measuring gender” in 276,812 residents of Ontario, Canada who entered the emergency department and acute care hospitals with a TBI diagnostic code between April 1st, 2002 and March 31st, 2020. We analysed differences in diagnostic codes between the sexes to derive gender score that reflected social dimensions. Sex had a significant effect on early mortality after severe TBI with a rate ratio (95% confidence interval (CI)) of 1.54 (1.24-1.91). Gender had a more significant effect than sex on discharge location. A person expressing more female-like characteristics have lower odds of being discharged to rehabilitation versus home with odds ratio (95% CI) of 0.54 (0.32-0.88). The method we propose offers an opportunity to measure gender effect independently of sex on TBI outcomes.
Purpose: The development and evaluation of machine learning models that automatically identify the body part(s) imaged, axis of imaging, and the presence of intravenous contrast material of a CT series of images. Methods: This retrospective study included 6955 series from 1198 studies (501 female, 697 males, mean age 56.5 years) obtained between January 2010 and September 2021. Each series was annotated by a trained board-certified radiologist with labels consisting of 16 body parts, 3 imaging axes, and whether an intravenous contrast agent was used. The studies were randomly assigned to the training, validation and testing sets with a proportion of 70%, 20% and 10%, respectively, to develop a 3D deep neural network for each classification task. External validation was conducted with a total of 35,272 series from 7 publicly available datasets. The classification accuracy for each series was independently assessed for each task to evaluate model performance. Results: The accuracies for identifying the body parts, imaging axes, and the presence of intravenous contrast were 96.0% (95% CI: 94.6%, 97.2%), 99.2% (95% CI: 98.5%, 99.7%), and 97.5% (95% CI: 96.4%, 98.5%) respectively. The generalizability of the models was demonstrated through external validation with accuracies of 89.7 - 97.8%, 98.6 - 100%, and 87.8 - 98.6% for the same tasks. Conclusions: The developed models demonstrated high performance on both internal and external testing in identifying key aspects of a CT series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.