Recent developments in string compactifications demonstrate obstructions to the simplest constructions of low energy cosmologies with positive vacuum energy. The existence of obstacles to creating scale-separated de Sitter solutions indicates a UV/IR puzzle for embedding cosmological vacua in a unitary theory of quantum gravity. Motivated by this puzzle, we propose an embedding of positive energy Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology within string theory. Our proposal involves confining 4D gravity on a brane which mediates the decay from a non-supersymmetric false AdS5 vacuum to a true vacuum. In this way, it is natural for a 4D observer to experience an effective positive cosmological constant coupled to matter and radiation, avoiding the need for scale separation or a fundamental de Sitter vacuum.
Constructing an explicit compactification yielding a metastable de Sitter (dS) vacuum in a UV consistent string theory is an incredibly difficult open problem. Motivated by this issue, as well as the conjecture that all non-supersymmetric AdS vacua must decay, we discuss the alternative possibility of realizing an effective four-dimensional dS cosmology on a codimensionone bubble wall separating two AdS 5 vacua. The construction further elaborates on the scenario of arXiv:1807.01570, where the aforementioned cosmology arises due to a non-perturbative decay and is embedded in a five-dimensional bulk in a time-dependent way. In this paper we discuss the relation between this scenario and the weak gravity conjecture and further develop the details of the four-dimensional cosmology. We provide a bulk interpretation for the dS temperature as the Unruh temperature experienced by an accelerated observer riding the bubble.A source of four-dimensional matter arises from a string cloud in the bulk, and we examine the consequences for the particle mass spectrum. Furthermore, we show how effective fourdimensional Einstein gravity on the bubble is obtained from the five-dimensional Gauss equation.We conclude by outlining some implications that this paradigm will have for holography, inflation, the standard model, and black holes. arXiv:1907.04268v1 [hep-th] 9 Jul 2019 The decay of AdS 2 Cosmology on a bubble 4 Bulk acceleration and induced temperature 6
In this paper we propose that bubbles of AdS within Minkowski spacetime, stabilized at a finite radius by stiff matter and an electromagnetic gas, can be an alternative endpoint of gravitational collapse. The bubbles are horizonless with a size up to 12.5% larger than their Schwarzschild radius depending on their charge. We argue that they are stable against small perturbations, and have thermodynamical properties similar to those of real black holes. We provide a realization of the bubbles within string theory that relies on a specific brane intersection giving rise to a shell carrying dissolved charges from lower dimensional D-branes as well as a gas of open strings. We also note that our construction provides a new way of understanding the entropy of Reissner-Nordström black holes in the extremal limit.
Motivated by the difficulty of constructing de Sitter vacua in string theory, a new approach was proposed in arXiv:1807.01570 and arXiv:1907.04268, where four dimensional de Sitter space was realized as the effective cosmology, with matter and radiation, on an expanding spherical bubble that mediates the decay of non supersymmetric AdS 5 to a more stable AdS 5 in string theory. In this third installment, we further expand on this scenario by considering the backreaction of matter in the bulk and on the brane in terms of how the brane bends. We compute the back reacted metric on the bent brane as well as in the five dimensional bulk. To further illuminate the effect of brane-bending, we compare our results with an explicit computation of the five dimensional graviton propagator using a holographic prescription. Finally we comment on a possible localization of four dimensional gravity in our model using two colliding branes. arXiv:2001.07433v1 [hep-th] 21 Jan 2020
We consider dimensional reductions of M-theory on T 7 /Z 3 2 with the inclusion of arbitrary metric flux and spacetime filling KK monopoles. With these ingredients at hand, we are able to construct a novel family of non-supersymmetric yet tachyon free Minkowski extrema. These solutions are supported by pure geometry with no extra need for gauge fluxes and possess a fully stable perturbative mass spectrum, up to a single flat direction. Such a direction corresponds to the overall internal volume, with respect to which the scalar potential exhibits a no-scale behavior. We then provide a mechanism that lifts the flat direction to give it a positive squared mass while turning Mkw 4 into dS 4 . The construction makes use of the combined effect of G 7 flux and higher curvature corrections. Our solution is scale separated and the quantum corrections are small. Finally we speculate on novel possibilities when it comes to scale hierarchies within a given construction of this type, and possible issues with the choice of quantum vacuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.