One of the extensions of the basic rough set model introduced by Pawlak in 1982 is the notion of rough sets on fuzzy approximation spaces. It is based upon a fuzzy proximity relation defined over a Universe. As is well known, an equivalence relation provides a granularization of the universe on which it is defined. However, a single relation defines only single granularization and as such to handle multiple granularity over a universe simultaneously, two notions of multigranulations have been introduced. These are the optimistic and pessimistic multigranulation. The notion of multigranulation over fuzzy approximation spaces were introduced recently in 2018. Topological properties of rough sets are an important characteristic, which along with accuracy measure forms the two facets of rough set application as mentioned by Pawlak. In this article, the authors introduce the concept of topological property of multigranular rough sets on fuzzy approximation spaces and study its properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.