Aims/hypothesis Maternal obesity predisposes offspring to adulthood morbidities, including type 2 diabetes. Type 2 diabetes and insulin resistance have been associated with shortened telomere length. First, we aimed to investigate whether or not maternal obesity influences insulin sensitivity and its relationship with leucocyte telomere length (LTL) in elderly women. Second, we tested whether or not resistance exercise training improves insulin sensitivity in elderly frail women. Methods Forty-six elderly women, of whom 20 were frail offspring of lean/normal weight mothers (OLM, BMI ≤26.3 kg/m 2 ) and 17 were frail offspring of overweight/ obese mothers (OOM, BMI ≥28.1 kg/m 2 ), were studied before and after a 4 month resistance training (RT) intervention. Muscle insulin sensitivity of glucose uptake was measured using 18 F-fluoro-2-deoxyglucose and positron emission tomography with computed tomography during a hyperinsulinaemic-euglycaemic clamp. Muscle mass and lipid content were measured using magnetic resonance and LTL was measured using real-time PCR. Results The OOM group had lower thigh muscle insulin sensitivity compared with the OLM group (p=0.048) but similar whole body insulin sensitivity. RT improved whole body and skeletal muscle insulin sensitivity in the OOM group only (p=0.004 and p=0.013, respectively), and increased muscle mass in both groups (p<0.01). In addition, in the OOM group, LTL correlated with different thigh muscle groups insulin sensitivity (ρ ≥ 0.53; p ≤ 0.05). Individuals with shorter LTL showed a higher increase in skeletal muscle insulin sensitivity after training (ρ≥−0.61; p≤0.05). Conclusions/interpretation Maternal obesity and having telomere shortening were associated with insulin resistance in adult offspring. A resistance exercise training programme may reverse this disadvantage among offspring of obese mothers. Trial registration: ClinicalTrials.gov NCT01931540Electronic supplementary material The online version of this article
The high incidence of insulin-dependent diabetes mellitus (IDDM) in Finland contrasts strikingly with the low rates in the neighbouring populations of countries in the Eastern Baltic region: Estonia, Latvia and Russia. To evaluate the possible contribution of genetic factors to these differences, the frequencies of HLA-DQB1 alleles and relevant DQB1-DQA1 or DQB1-DRB1 haplotypes associated with IDDM risk or protection were analysed among IDDM patients and control subjects from these four populations. An increased frequency of HLA-DQB1*0302, DQB1*02-DQA1*05 and DQB1*0302-DRB1*0401 was observed in subjects with IDDM in all studied populations, whereas the prevalence of DQB1*0301 and DQB1*0602 and/or *0603 was decreased among patients. The degree of IDDM risk associated with HLA alleles analysed here did not differ significantly between the populations. Comparisons of the distribution of IDDM-related HLA alleles and haplotypes in the background populations revealed its consonance with IDDM incidence. The combined frequency of high risk genotypes was significantly higher among Finns than in other populations studied. Our data support the hypothesis that variance in the dispersion of HLA alleles is the genetic basis of variation of IDDM incidence observed in the Eastern Baltic region.
Bone marrow insulin sensitivity may be an important factor for bone health in addition to bone mineral density especially in insulin resistant conditions. First we aimed to study if prenatal maternal obesity plays a role in determining bone marrow insulin sensitivity in elderly female offspring. Secondly we studied if a four-month individualized resistance training intervention increases bone marrow insulin sensitivity in elderly female offspring and whether this possible positive outcome is regulated by the offspring’s mother’s obesity status. 37 frail elderly females (mean age 71.9 ± 3.1 years) of which 20 were offspring of lean/normal-weight mothers (OLM, maternal BMI ≤ 26.3 kg/m2) and 17 were offspring of obese/overweight mothers (OOM, maternal BMI ≥ 28.1 kg/m2) were studied before and after a four-month individualized resistance training intervention. Nine age- and sex-matched non-frail controls (maternal BMI ≤ 26.3 kg/m2) were studied at baseline. Femoral bone marrow (FBM) and vertebral bone marrow (VBM) insulin sensitivity were measured using [18F]fluoro-2-deoxy-D-glucose positron emission tomography with computer tomography under hyperinsulinemic euglycemic clamp. We found that bone marrow insulin sensitivity was not related to maternal obesity status but FBM insulin sensitivity correlated with whole body insulin sensitivity (R = 0.487, p = 0.001). A four-month resistance training intervention increased FBM insulin sensitivity by 47% (p = 0.006) only in OOM, while VBM insulin sensitivity remained unchanged regardless of the maternal obesity status. In conclusion, FBM and VBM glucose metabolism reacts differently to a four-month resistance training intervention in elderly women according to their maternal obesity status.Trial RegistrationClinicalTrials.gov NCT01931540
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.