Fetal or neonatal alloimmune thrombocytopenia (FNAIT) is a potentially life-threatening disease where fetal platelets are destroyed by maternal anti-platelet IgG alloantibodies. The clinical outcome varies from asymptomatic, to petechiae or intracranial haemorrhage, but no marker has shown reliable correlation with severity, making screening for FNAIT impractical and highly inefficient. We recently found IgG Fc-glycosylation towards platelet and red blood cell antigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic antibodies to FcγRIIIa and FcγRIIIb, and hence platelet destruction. Here we analysed the N-linked glycans of human platelet antigen (HPA)-1a specific IgG1 with mass spectrometry in large series of FNAIT cases (n = 166) including longitudinal samples (n = 26). Besides a significant decrease in Fc-fucosylation after the first pregnancy (P = 0·0124), Fc-glycosylation levels remained stable during and after pregnancy and in subsequent pregnancies. Multiple logistic regression analysis identified anti-HPA-1a -fucosylation (P = 0·006) combined with galactosylation (P = 0·021) and antibody level (P = 0·038) correlated with bleeding severity, making these parameters a feasible marker in screening for severe cases of FNAIT.
The promising clinical effects of mesenchymal stromal/ stem cells (MSCs) rely especially on paracrine and nonimmunogenic mechanisms. Delivery routes are essential for the efficacy of cell therapy and systemic delivery by infusion is the obvious goal for many forms of MSC therapy. Lung adhesion of MSCs might, however, be a major obstacle yet to overcome. Current knowledge does not allow us to make sound conclusions whether MSC lung entrapment is harmful or beneficial, and thus we wanted to explore MSC lung adhesion in greater detail. We found a striking difference in the lung clearance rate of systemically infused MSCs derived from two different clinical sources, namely bone marrow (BM-MSCs) and umbilical cord blood (UCB-MSCs). The BM-MSCs and UCB-MSCs used in this study differed in cell size, but our results also indicated other mechanisms behind the lung adherence. A detailed analysis of the cell surface profiles revealed differences in the expression of relevant adhesion molecules. The UCB-MSCs had higher expression levels of a4 integrin (CD49d, VLA-4), a6 integrin (CD49f, VLA-6), and the hepatocyte growth factor receptor (c-Met) and a higher general fucosylation level. Strikingly, the level of CD49d and CD49f expression could be functionally linked with the lung clearance rate. Additionally, we saw a possible link between MSC lung adherence and higher fibronectin expression and we show that the expression of fibronectin increases with MSC culture confluence. Future studies should aim at developing methods of transiently modifying the cell surface structures in order to improve the delivery of therapeutic cells.
Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and α2-3-sialylation.
The expression of the epitopes recognized by the monoclonal antibodies Tra-1-60 and Tra-1-81 is routinely used to assess the pluripotency status of human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells. Although it is known that the epitopes recognized by Tra-1-60 and Tra-1-81 are carbohydrates, the exact molecular identity of these epitopes has been unclear. Glycan array analysis with more than 500 oligosaccharide structures revealed specific binding of Tra-1-60 and Tra-1-81 to two molecules containing terminal type 1 lactosamine: Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAc and Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3GlcNAcβ1-3)Galβ1-4Glc. The type 1 disaccharide in itself was not sufficient for binding, indicating that the complete epitope requires an extended tetrasaccharide structure where the type 1 disaccharide is β1,3-linked to type 2 lactosamine. Our mass spectrometric analysis complemented with glycosidase digestions of hESC O-glycans indicated the presence of the extended tetrasaccharide epitope on an O-glycan with the likely structure Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAc. Thus, the present data indicate that the pluripotency marker antibodies Tra-1-60 and Tra-1-81 recognize the minimal epitope Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAc, which is present in hESCs as a part of a mucin-type O-glycan structure. The exact molecular identity of Tra-1-60 and Tra-1-81 is important for the development of improved tools to characterize the pluripotent phenotype.
The targeted RAAPD program was implemented effectively in the national maternity care program in Finland. An accurate fetal RHD screening test allows discontinuation of newborn testing without risking the postnatal prophylaxis program. In the future, the main area to investigate will be the clinical effect of RAADP on subsequent pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.