BackgroundTriacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis.ResultsBeneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold.ConclusionsIn silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.
BackgroundWax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions.ResultsBased on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB) was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases.ConclusionsThe monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.
BackgroundFatty aldehydes are industrially relevant compounds, which also represent a common metabolic intermediate in the microbial synthesis of various oleochemicals, including alkanes, fatty alcohols and wax esters. The key enzymes in biological fatty aldehyde production are the fatty acyl-CoA/ACP reductases (FARs) which reduce the activated acyl molecules to fatty aldehydes. Due to the disparity of FARs, identification and in vivo characterization of reductases with different properties are needed for the construction of tailored synthetic pathways for the production of various compounds.ResultsFatty aldehyde production in Acinetobacter baylyi ADP1 was increased by the overexpression of three different FARs: a native A. baylyi FAR Acr1, a cyanobacterial Aar, and a putative, previously uncharacterized dehydrogenase (Ramo) from Nevskia ramosa. The fatty aldehyde production was followed in real-time inside the cells with a luminescence-based tool, and the highest aldehyde production was achieved with Aar. The fate of the overproduced fatty aldehydes was studied by measuring the production of wax esters by a native downstream pathway of A. baylyi, for which fatty aldehyde is a specific intermediate. The wax ester production was improved with the overexpression of Acr1 or Ramo compared to the wild type A. baylyi by more than two-fold, whereas the expression of Aar led to only subtle wax ester production. The overexpression of FARs did not affect the length of the acyl chains of the wax esters.ConclusionsThe fatty aldehyde production, as well as the wax ester production of A. baylyi, was improved with the overexpression of a key enzyme in the pathway. The wax ester titer (0.45 g/l) achieved with the overexpression of Acr1 is the highest reported without hydrocarbon supplementation to the culture. The contrasting behavior of the different reductases highlight the significance of in vivo characterization of enzymes and emphasizes the possibilities provided by the diversity of FARs for pathway and product modulation.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-0869-z) contains supplementary material, which is available to authorized users.
Intracellular metabolic sensors can be used for efficient screening and optimization of microbial cell factories. In particular, the sensors are useful in acquiring information about pathway dynamics and bottlenecks in a straightforward manner. Here, we developed a twin-layer biosensor that functions simultaneously at two levels: through transcription factor mediated sensing and enzyme-metabolite interaction, providing insights into the dynamics of alkane metabolism. In addition, the sensor can be used for monitoring either alkane degradation or biosynthesis, depending on the used cellular context. Alkanes are monitored using a fluorescent reporter green fluorescent protein placed under a native alkane-inducible promoter, whereas a bacterial luciferase producing bioluminescence signal enzymatically detects a specific metabolic intermediate in the alkane production/degradation pathway. First, we employed the sensor to investigate the native alkane degradation route in Acinetobacter baylyi ADP1. The highest fluorescence and luminescence signals were obtained for dodecane. Second, we constructed a non-native alkane synthesis pathway in A. baylyi ADP1, of which the functionality was confirmed with the sensor. The twin-layer approach provides convenient means to study and optimize the kinetics and performance of the heterologous pathway and will facilitate the development of an efficient cell factory.
BackgroundIntegration of synthetic metabolic pathways to catabolically diverse chassis provides new opportunities for sustainable production. One attractive scenario is the use of abundant waste material to produce a readily collectable product, which can reduce the production costs. Towards that end, we established a cellular platform for the production of semivolatile medium-chain α-olefins from lignin-derived molecules: we constructed 1-undecene synthesis pathway in Acinetobacter baylyi ADP1 using ferulate, a lignin-derived model compound, as the sole carbon source for both cell growth and product synthesis.ResultsIn order to overcome the toxicity of ferulate, we first applied adaptive laboratory evolution to A. baylyi ADP1, resulting in a highly ferulate-tolerant strain. The adapted strain exhibited robust growth in 100 mM ferulate while the growth of the wild type strain was completely inhibited. Next, we expressed two heterologous enzymes in the wild type strain to confer 1-undecene production from glucose: a fatty acid decarboxylase UndA from Pseudomonas putida, and a thioesterase ‘TesA from Escherichia coli. Finally, we constructed the 1-undecene synthesis pathway in the ferulate-tolerant strain. The engineered cells were able to produce biomass and 1-undecene solely from ferulate, and excreted the product directly to the culture headspace.ConclusionsIn this study, we employed a bacterium Acinetobacter baylyi ADP1 to integrate a natural aromatics degrading pathway to a synthetic production route, allowing the upgradation of lignin derived molecules to value-added products. We developed a highly ferulate-tolerant strain and established the biosynthesis of an industrially relevant chemical, 1-undecene, solely from the lignin-derived model compound. This study reports the production of alkenes from lignin derived molecules for the first time and demonstrates the potential of lignin as a sustainable resource in the bio-based synthesis of valuable products.Electronic supplementary materialThe online version of this article (10.1186/s12934-019-1097-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.