Sugarcane mosaic virus (SCMV) is a plant pathogenic virus of the family Potyviridae that causes chlorosis, stunting and significantly reduced sugar productivity in sugarcane. Pathogen-derived resistance is a method used to develop SCMV-resistant sugarcane by overexpression of viral DNA. In this study, the gene encoding the coat protein (CP) of SCMV was amplified by reverse transcriptase PCR from symptomatic sugarcane leaves and used to generate transgenic sugarcane. Nucleotide sequence analysis of amplified cDNA indicated that the 998-bp-long cDNA, termed ScMVCp cDNA, codes for the CP of SCMV from the PS881 isolate. The ScMVCp cDNA was inserted into the binary vector pRI101-ON with two constructs, a full nucleotide sequence (p927) and a sequence coding for N-terminally truncated protein (p702). The constructs were then introduced into sugarcane using Agrobacterium-mediated transformation. Southern blot analysis showed a single hybridized DNA copy inserted into the genome of transgenic sugarcane lines. The inserted genes were expressed at both the RNA transcript and protein levels in the transgenic sugarcane. The highest expression was found in transgenic lines 10, 11 and 13 from the p927 construct. Artificial infection by the virus showed that p927 generated a higher resistance to virus compared with p702. This resistance was passed on to the second generation of transgenic sugarcane with 100 and 20-40% levels of resistance in the p927 and p702 transgenic lines, respectively. This report shows that the full sequence of the CP gene is required to disrupt viral assembly and packaging, thereby generating resistance to SCMV infection.
Sugarcane mosaic virus (SCMV, genus Potyvirus, family Potyviridae) is a prominent pathogen of sugarcane (Saccharum sp. hybrids). It can cause losses in susceptible varieties, in crop as well as sugar production, economically. Although it has been studied in major sugar-producing countries, research on the definement of SCMV from Indonesian isolates based on molecular study has been very limited. This study aimed to obtain a proper recombinant antigens emanating from coat protein of SCMV from Indonesian isolate in order to produce polyclonal antibodies that cann be used for immunodiagnosis assays in a subsequent study. A gene-encoding coat protein of SCMV (CP-SCMV) was amplified using RT-PCR and cloned into vector pJET1.2. The cDNA was inserted into 6X His-tag expression plasmid of pET28a(+) and over-expressed in Escherichia coli BL21(DE3) to produce a recombinant protein. The highest expression was found in 0.1M IPTG induction media for 5 h at 37oC. SDS-PAGE analysis clarified that the recombinant CP-SCMV remained as an insoluble fraction. Purifications was carried out by the affinity Ni-NTA resin, followed by electroelution to obtain a highly purified protein. To meet the quality requirements of a proper antigen, the highly purified protein was concentrated. A molecular weight of the rCP-SCMV (approximately 40 kDa) was clearly observed by 10% SDS-PAGE at the concentration of 16.184 mg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.