The present study was conducted to investigate the lipid-lowering and antioxidative activities of Ocimum sanctum L. (OS) leaf extracts in liver and heart of rats fed with high-cholesterol (HC) diet for seven weeks. The results shows that OS suppressed the high levels of serum lipid profile and hepatic lipid content without significant effects on fecal lipid excretion. Fecal bile acids excretion was increased in HC rats treated with OS. The high serum levels of TBARS as well as AST, ALT, AP, LDH, CK-MB significantly decreased in HC rats treated with OS. OS suppressed the high level of TABARS and raised the low activities of GPx and CAT without any impact on SOD in the liver. As for the cardiac tissues, OS lowered the high level of TABARS, and raised the activities of GPx, CAT, and SOD. Histopathological results show that OS preserved the liver and myocardial tissues. It can be concluded that OS leaf extracts decreased hepatic and serum lipid profile, and provided the liver and cardiac tissues with protection from hypercholesterolemia. The lipid-lowering effect is probably due to the rise of bile acids synthesis using cholesterol as precursor, and antioxidative activity to protect liver from hypercholesterolemia.
It has been reported that Ocimum sanctum L. (OS) leaves decrease serum lipid profile in normal and diabetic animals. No experimental evidences support the anti-hyperlipidemic and antioxidative actions against hypercholesterolemia. Moreover the identity of the specific chemical ingredients in OS leaves responsible for these pharmacological effects are unknown. Since OS leaves are rich in essential oil (EO). Therefore the present study was conducted to investigate the anti-hyperlipidemic and antioxidative activities of EO extracted from OS leaves in rats fed with high cholesterol (HC) diet. EO was extracted by the hydrodistillation method and the chemical constituents were then identified by Gas Chromatography-Mass Spectrometry. The experiment was performed in Male Wistar rats fed with 2.5 g%(w/w) of cholesterol diet for seven weeks. During the last 3 weeks, rats were daily fed with EO. The results showed that phenyl propanoid compounds including eugenol and methyl eugenol were the major constituents of EO. EO suppressed the high serum lipid profile and atherogenic index as well as serum lactate dehydrogenase and creatine kinase MB subunit without significant effect on high serum levels of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase in rats fed with HC diet. In addition, EO was found to decrease the high levels of thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPx) and superoxide dismutase (SOD) without impacting catalase (CAT) in the cardiac tissue while in the liver, it decreased high level of TBARS without significantly effecting GPx, SOD and CAT. Histopathological results confirmed that EO preserved the myocardial tissue. It can be concluded that EO extracted from OS leaves has lipid-lowering and antioxidative effects that protect the heart against hypercholesterolemia. Eugenol that is contained in EO likely contribute to these pharmacological effects.
1. The present study evaluated the effect of diabetes, hypercholesterolaemia and their combination on the contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to relaxation of rat isolated aortic rings and the potential contribution of oxidant stress to the disturbance of endothelial function. 2. Thoracic aortic rings from control, diabetic, hypercholesterolaemic and diabetic plus hypercholesterolaemic rats were suspended in organ baths for tension recording. Generation of superoxide by the aorta was measured using lucigenin-enhanced chemiluminescence. 3. The maximal response to acetylcholine (ACh) was significantly reduced in diabetic or hypercholesterolaemic rats compared with control rats. In rats with diabetes plus hypercholesterolaemia, both the sensitivity and maximal response to ACh was impaired. In control rats, the response to ACh was abolished by the NO synthase inhibitor N(G)-nitro-L-arginine (L-NNA) or inhibition of soluble guanylate cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In contrast, in rats with diabetes, hypercholesterolaemia or both, relaxation to ACh was resistant to inhibition by L-NNA or ODQ, but abolished by additional inhibition of K(Ca) channels with charybdotoxin plus apamin. 4. The generation of superoxide was not significantly enhanced in aortic rings from either diabetic or hypercholesterolaemic rats, but was significantly increased in aortic rings from rats with diabetes plus hypercholesterolaemia. 5. These results suggest that when diabetes and hypercholesterolaemia impair endothelium-dependent relaxation, due to a diminished contribution from NO, a compensatory contribution of EDHF to endothelium-dependent relaxation of the aorta is revealed. The attenuation of NO-mediated relaxation, at least in the presence of both diabetes and hypercholesterolaemia, is associated with enhanced superoxide generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.