Background Aberrant activation of the NLRP 3 (nucleotide‐binding oligomerization domain, leucine‐rich repeat–containing receptor family pyrin domain‐containing 3) inflammasome is thought to play a causative role in atherosclerosis. NLRP 3 is kept in an inactive ubiquitinated state to avoid unwanted NLRP 3 inflammasome activation. This study aimed to test the hypothesis that pharmacologic manipulating of NLRP 3 ubiquitination blunts the assembly and activation of the NLRP 3 inflammasome and protects against vascular inflammation and atherosclerosis. Since genetic studies yielded mixed results about the role for this inflammasome in atherosclerosis in low‐density lipoprotein receptor– or apolipoprotein E–deficient mice, this study attempted to clarify the discrepancy with the pharmacologic approach using both models. Methods and Results We provided the first evidence demonstrating that tranilast facilitates NLRP 3 ubiquitination. We showed that tranilast restricted NLRP 3 oligomerization and inhibited NLRP 3 inflammasome assembly. Tranilast markedly suppressed NLRP 3 inflammasome activation in low‐density lipoprotein receptor– and apolipoprotein E–deficient macrophages. Through reconstitution of the NLRP 3 inflammasome in human embryonic kidney 293T cells, we found that tranilast directly limited NLRP 3 inflammasome activation. By adopting different regimens for tranilast treatment of low‐density lipoprotein receptor– and apolipoprotein E–deficient mice, we demonstrated that tranilast blunted the initiation and progression of atherosclerosis. Mice receiving tranilast displayed a significant reduction in atherosclerotic lesion size, concomitant with a pronounced decline in macrophage content and expression of inflammatory molecules in the plaques compared with the control group. Moreover, tranilast treatment of mice substantially hindered the expression and activation of the NLRP 3 inflammasome in the atherosclerotic lesions. Conclusions Tranilast potently enhances NLRP 3 ubiquitination, blunts the assembly and activation of the NLRP 3 inflammasome, and ameliorates vascular inflammation and atherosclerosis in both low‐density lipoprotein receptor– and apolipoprotein E–deficient mice.
Background Breast cancer (BC) has a marked tendency to spread to the bone, resulting in significant skeletal complications and mortality. Recently, circular RNAs (circRNAs) have been reported to contribute to cancer initiation and progression. However, the function and mechanism of circRNAs in BC bone metastasis (BC-BM) remain largely unknown. Methods Bone-metastatic circRNAs were screened using circRNAs deep sequencing and validated using in situ hybridization in BC tissues with or without bone metastasis. The role of circIKBKB in inducing bone pre-metastatic niche formation and bone metastasis was determined using osteoclastogenesis, immunofluorescence and bone resorption pit assays. The mechanism underlying circIKBKB-mediated activation of NF-κB/bone remodeling factors signaling and EIF4A3-induced circIKBKB were investigated using RNA pull-down, luciferase reporter, chromatin isolation by RNA purification and enzyme-linked immunosorbent assays. Results We identified that a novel circRNA, circIKBKB, was upregulated significantly in bone-metastatic BC tissues. Overexpressing circIKBKB enhanced the capability of BC cells to induce formation of bone pre-metastatic niche dramatically by promoting osteoclastogenesis in vivo and in vitro. Mechanically, circIKBKB activated NF-κB pathway via promoting IKKβ-mediated IκBα phosphorylation, inhibiting IκBα feedback loop and facilitating NF-κB to the promoters of multiple bone remodeling factors. Moreover, EIF4A3, acted acting as a pre-mRNA splicing factor, promoted cyclization of circIKBKB by directly binding to the circIKBKB flanking region. Importantly, treatment with inhibitor eIF4A3-IN-2 reduced circIKBKB expression and inhibited breast cancer bone metastasis effectively. Conclusion We revealed a plausible mechanism for circIKBKB-mediated NF-κB hyperactivation in bone-metastatic BC, which might represent a potential strategy to treat breast cancer bone metastasis.
Three different functional SBA-15 were prepared by a post-grafting method using three iminodiacetic acid derivatives of ethylenediaminetriacetic acid (ED3A), diethylenetriaminetetraacetic acid (DT4A), and 1,2-cyclohexylenedinitrilotriacetic acid (CyD3A), which were used as adsorbents for removal of uranium(vi) from aqueous solution. These materials were characterized by FT-IR, NMR, TEM, nitrogen adsorption/desorption experiments, and elemental analysis. The effect of pH, ionic strength, contact time, solid-liquid ratio, initial metal ion concentration, temperature, and coexisting ions on uranium(vi) sorption behaviors of the functionalized SBA-15 was studied. Typical sorption isotherms (Langmuir and Freundlich) were determined for the sorption process, and the maximum sorption capacity was calculated. The influence of functional groups on uranium(vi) sorption was also discussed. As a result, compared with other current U(vi) sorbents (granite, kaolin, attapulgite), SBA-15-1,2-cyclohexylenedinitrilotriacetic acid (SBA-15-CyD3A) possessed good selective sorption properties, which had potential application in separation of uranium(vi).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.