Context.-The deposition of extracellular matrix is a major pathogenic mechanism leading to fibrosis and progressive decline in renal function in patients with lupus nephritis (LN). Currently, available clinicopathologic features cannot predict renal outcome consistently.Objective.-To test that the expression of renal fibrogenic genes correlates with renal fibrosis at the time of biopsy and is predictive of renal outcomes.Design.-Renal gene expression levels of transforming growth factor b-1 (TGFB1), and collagen I (COL1) were studied by real-time multiplex quantitative polymerase chain reaction in a prospective cohort of patients with LN (n ¼ 39). Extracellular matrix index (ECMI) and collagen I/ III matrix index were measured from Picro-Sirius Redstained slides under normal and polarized light, respectively.Results.-After follow-up (median, 43.9 months), renal failure (50% reduction in glomerular filtration rate [GFR] or dialysis) had developed in 13 subjects. The expression levels of renal fibrogenic genes were increased as compared to controls without LN. COL1 correlated with collagen I/III matrix index at baseline. Both high expression of TGFB1 or COL1 tended to predict renal failure by univariate analysis. By multivariate analysis, high ECMI and low GFR were predictive of renal failure. In patients with baseline GFR of 60 mL/min/1.73 m 2 or greater, high renal COL1 expression was an independent (hazard ratio ¼ 4.4, P ¼ .04) predictor of renal failure.Conclusions.-High renal COL1 expression is a strong predictor of adverse renal outcome in patients with LN and preserved baseline GFR. These findings support larger prospective studies to confirm the benefits of COL1 in identifying patients at high risk of progression to renal disease.
Background Determining kidney function in critically ill patients is paramount for the dose adjustment of several medications. When assessing kidney function, the glomerular filtration rate (GFR) is generally estimated either by calculating urine creatinine clearance (UCrCl) or using a predictive equation. Unfortunately, all predictive equations have been derived for medical outpatients. Therefore, the validity of predictive equations is of concern when compared with that of the UCrCl method, particularly in medical critically ill patients. Therefore, we conducted this study to assess the agreement of the estimated GFR (eGFR) using common predictive equations and UCrCl in medical critical care setting. Methods This was the secondary analysis of a nutrition therapy study. Urine was collected from participating patients over 24 h for urine creatinine, urine nitrogen, urine volume, and serum creatinine measurements on days 1, 3, 5, and 14 of the study. Subsequently, we calculated UCrCl and eGFR using four predictive equations, the Cockcroft–Gault (CG) formula, the four and six-variable Modification of Diet in Renal Disease Study (MDRD-4 and MDRD-6) equations, and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The correlation and agreement between eGFR and UCrCl were determined using the Spearman rank correlation coefficient and Bland–Altman plot with multiple measurements per subject, respectively. The performance of each predictive equation for estimating GFR was reported as bias, precision, and absolute percentage error (APE). Results A total of 49 patients with 170 urine samples were included in the final analysis. Of 49 patients, the median age was 74 (21–92) years-old and 49% was male. All patients were hemodynamically stable with mean arterial blood pressure of 82 (65–108) mmHg. Baseline serum creatinine was 0.93 (0.3–4.84) mg/dL and baseline UCrCl was 46.69 (3.40–165.53) mL/min. The eGFR from all the predictive equations showed modest correlation with UCrCl (r: 0.692 to 0.759). However, the performance of all the predictive equations in estimating GFR compared to that of UCrCl was poor, demonstrating bias ranged from −8.36 to −31.95 mL/min, precision ranged from 92.02 to 166.43 mL/min, and an unacceptable APE (23.01% to 47.18%). Nevertheless, the CG formula showed the best performance in estimating GFR, with a small bias (−2.30 (−9.46 to 4.86) mL/min) and an acceptable APE (14.72% (10.87% to 23.80%)), especially in patients with normal UCrCl. Conclusion From our finding, CG formula was the best eGFR formula in the medical critically ill patients, which demonstrated the least bias and acceptable APE, especially in normal UCrCl patients. However, the predictive equation commonly used to estimate GFR in critically ill patients must be cautiously applied due to its large bias, wide precision, and unacceptable error, particularly in renal function impairment.
BK virus nephropathy เป็นภาวะติดเชื้อ BK virus ที่ไต ซึ่งพบมากในผู้ป่วยปลูกถ่ายอวัยวะไต (Kidney transplantation) แต่อย่างไรก็ตาม BK nephropathy ยังสามารถพบในกลุ่มผู้ป่วยอื่นได้ ได้แก่ ผู้ป่วยที่ได้รับการปลูกถ่ายอวัยวะ โดยอาการแสดงทางไตได้แก่การตรวจพบค่าไตผิดปกติ แต่มักจะพบปัสสาวะเป็นเลือดจาก Hemorrhagic cystitis ได้บ่อยในกลุ่มผู้ป่วยปลูกถ่ายไขกระดูก นอกจากนี้ยังมีรายงานอาการแสดงของการติดเชื้อ BK virus ในอวัยวะอื่นๆอีกด้วย การวินิจฉัยหลักคือการเจาะเนื้อไตเพื่อตรวจพยาธิวิทยา โดยจะพบลักษณะ Cytopathic change บริเวณท่อไตจากการย้อม Light microscope และย้อมเซลล์ติดเชื้อ BK virus ด้วย SV40 ส่วนการรักษา BK nephropathy ในปัจจุบันยังคงอ้างอิงการรักษาในผู้ป่วยปลูกถ่ายไต เนื่องจากยังมีรายงานผู้ป่วย BK nephropathy ในผู้ป่วยที่ไม่ใช่ผู้ป่วยปลูกถ่ายไตน้อย โดยการรักษาหลักคือการลดยา หรือหยุดยากดภูมิ การเปลี่ยนยากดภูมิเป็นชนิด mTOR inhibitors หรือการให้ยาเสริมแม้ว่าปัจจุบันยังไม่มีหลักฐานสนับสนุนชัดเจน ได้แก่ Cidofovir, Leflunomide หรือ IVIG โดยสรุปการติดเชื้อ BK virus ในกลุ่มผู้ป่วยที่ไม่ได้ปลูกถ่ายอวัยวะไตแม้ว่าจะพบได้น้อย แต่มีความสำคัญเนื่องจากหากไม่ได้รับการรักษา จะมีผลทำให้ไตเสื่อมและนำไปสู่การบำบัดทดแทนไตในระยะท้ายที่สุด
Purpose Potential adverse outcomes of Proton pump inhibitors (PPIs) have increasingly been reported. The potential risks to PPIs include hypomagnesemia and chronic kidney disease (CKD). Unlike a real-world electronic medical record (RW-EMR) with active-comparator design, claim databases and special population cohort with non-user design, using in previous studies, resulted in a wide range of strength of association with indication bias. This study aimed to measure the total effect of association between PPIs use and CKD incidence using Thai RW-EMR. Patients and Methods A retrospective hospital-based cohort was applied into this study. Electronic medical records and administrative data of out- and inpatient were retrieved from October 1st, 2010 to September 30th, 2017. On-treatment with grace period as well as propensity score matching was used in data analysis. Cox proportional hazard models were applied to evaluate the PPIs-CKD association. Results Of all 63,595 participants, a total of 59,477 new PPIs and 4118 Histamine 2-receptor antagonist (H2RA) users were eligible for follow-up. As compared with H2RA, the PPI users were non-elderly and more likely being female. The association of PPIs with CKD was statistically significant (adjusted hazard ratio [HR] = 3.753, 95% CI = 2.385–5.905). The HR were not statistically different by concomitant use PPIs with NSAIDs and by medication possession ratio levels. Conclusion The association between PPIs and CKD incidence was statistically significant in this hospital-based cohort. However, self-treatment with over-the-counter PPIs, as well as, smoking, drinking alcohol and body mass index could not be fully retrieved, affecting the estimation of treatment effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.