The present study was to investigate in vitro alpha-glucosidase, pancreatic alpha-amylase and protein glycation inhibitory activities of nine edible plants. The results indicated that total phenolics, flavonoids, and condensed tannins of nine edible plants showed marked variations, ranging from 12.2 to 80.1 mg gallic acid equivalent/g extract, 2.34 to 13.65 mg quercetin equivalent/g extract, and 97.2 to 460.1 mg catechin equivalent/g extract, respectively. Our findings showed that grape seed, Cat's whiskers and Sweetleaf extract were the most effective pancreatic alpha-amylase, intestinal maltase, and sucrase inhibitor with IC(50) values of 0.29 +/- 0.01 mg/ml, 0.97 +/- 0.10 mg/ml and 0.86 +/- 0.01 mg/ml, respectively. All extracts (1 mg/ml) markedly inhibited the glycation of bovine serum albumin in fructose-mediated non-enzyme glycation by 50-30% at week 1. It was found that Pennywort maintained the high percentage inhibition among those of the extracts during the 4 weeks of experiment. These edible plants may be used for controlling blood glucose level and prevention of the development of type 2 diabetes.
Rice bran (RB) is a nutrient-rich by-product of the rice milling process. It consists of pericarp, seed coat, nucellus, and aleurone layer. RB is a rich source of a protein, fat, dietary fibers, vitamins, minerals, and phytochemicals (mainly oryzanols and tocopherols), and is currently mostly used as animal feed. Various studies have revealed the beneficial health effects of RB, which result from its functional components including dietary fiber, rice bran protein, and gamma-oryzanol. The health effects of RB including antidiabetic, lipid-lowering, hypotensive, antioxidant, and anti-inflammatory effects, while its consumption also improves bowel function. These health benefits have drawn increasing attention to RB in food applications and as a nutraceutical product to mitigate metabolic risk factors in humans. This review therefore focuses on RB and its health benefits.
Background:The consumption of a high carbohydrate diet may be associated with an increased risk of type 2 diabetes and obesity. Previous studies in vitro have revealed that grape seed extract (GSE) inhibited the intestinal α-glucosidases and α-pancreatic amylase that may delay carbohydrate digestion and absorption, resulting in the suppression of postprandial glycemia. The objective of the study was to assess whether consumption of GSE together with high carbohydrate meal affects postprandial glycemia in healthy participants.Materials and Methods:The study used acute, randomized, controlled crossover design in which eight healthy subjects (four female and four male, mean aged 21.25 ± 3.69 years; body mass index =20.28 ± 1.40 kg/m2) received high carbohydrate (HC) meal (73.6 %) together with or without 100 and 300 mg GSE.Results:Results showed that postprandial plasma glucose concentrations at 15 min and 30 min after ingestion HC meal together with 100 mg GSE (5.33 ± 0.41 mmol/L and 5.62 ± 0.47 mmol/L, respectively) and 300 mg GSE (5.27 ± 0.29 mmol/L; 5.75 ± 0.44 mmol/L, respectively) were significantly lower than that of HC meal (P<0.05). There was statistically significant difference in the 2 h area under the glucose response curve between HC meal and HC meal plus GSE.Conclusions:GSE reduces postprandial plasma glucose in healthy participants. The delayed and attenuated hyperglycemia may have a useful strategy to prevent development of diabetes in the healthy population.
Overweight participants chewed less and ingested more calories. Chewing 50 times per bite could reduce caloric intake regardless of weight status, suggesting that slow eating via increased chewing may help to reduce energy intake during meals. However, chewing did not affect postprandial plasma glucose and insulin levels in healthy young adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.