A real rejuvenator must have the ability to disaggregate oxidized asphaltene nanoclusters. However, few studies pay attention to the topic, and there is a lack of comparison of the disaggregation ability of different rejuvenators. Thus, the disaggregation ability and regeneration mechanism of three bio-rejuvenators (waste cooking oil (WCO), waste wood oil (WWO), and straw liquefied residue oil (SLRO)) on oxidized asphaltene nanoclusters were studied in this paper. Laboratory tests and molecular dynamics (MD) simulation were used to compare the effectiveness of the three bio-rejuvenators and reveal its corresponding mechanism. It is found that these bio-rejuvenators have a softening effect on aged asphalt binder, but not all of them can disaggregate oxidized asphaltene nanoclusters. The introduction of WWO and WCO can effectively disturb the nanoclusters caused by the increase of polar functional groups during the oxidation process. The effect of WWO is more significant, but neither of them can restore the asphaltene dispersion to the virgin asphalt binder. SLRO has an adverse effect on the disaggregation of oxidized asphaltene nanoclusters. WCO, WWO, and SLRO showed different disaggregation mechanisms, including ″pull-out, intercalation, and compression″, respectively. WCO and WWO can increase the activation energy reduced by aging in a short aging time, and SLRO makes the activation energy lower. Such findings can help enterprises screen more reasonable rejuvenators to facilitate the recycling of reclaimed asphalt pavement (RAP) materials and promote the sustainable development of the construction industry.
The efficacy of conventional treatments for pancreatic cancer remains unsatisfactory, and immunotherapy is an emerging option for adjuvant treatment of this highly deadly disorder. The tumor-associated antigen (TAA) MUC1 is expressed in a variety of human cancers and is overexpressed in more than 90% of pancreatic cancer, which makes it an attractive target for cancer immunotherapy. As a self-protein, MUC1shows a low immunogenicity because of immune tolerance, and the most effective approach to breaking immune tolerance is alteration of the antigen structure. In this study, the altered MUC1 1068-1076Y1 epitope (YLQRDISEM) by modification of amino acid residues in sequences presented a higher immunogenicity and elicited more CTLs relative to the wild-type (WT) MUC1 1068-1076 epitope (ELQRDISEM). In addition, the altered MUC1 1068-1076Y1 epitope was found to cross-recognize pancreatic cancer cells expressing WT MUC1 peptides in an HLA-A0201-restricted manner and trigger stronger immune responses against pancreatic cancer via the perforin/granzyme apoptosis pathway. As a potential HLA-A0201-restricted CTL epitope, the altered MUC1 1068-1076Y1 epitope is considered as a promising target for immunotherapy of pancreatic cancer. Alteration of epitope residues may be feasible to solve the problem of the low immunogenicity of TAA and break immune tolerance to induce immune responses against human cancers.
This study aims to analyze the effect of polyurethane (PU) on the high- and low-temperature performance of graphene oxide (GO)-modified asphalt. Using the three major-indices tests, bending beam rheometer (BBR) test and dynamic shear rheometer (DSR) test, the results show that composite modified asphalt improved each performance by 10% to 140% compared to the base asphalt. The change in functional groups of the composite-modified asphalt is detected by infrared spectrum scanning to analyze the modification mechanism. The asphalt preference system is established using analytic hierarchy process (AHP) in the cold region of northeastern China and the SA index is creatively added to the system to make the analysis results more accurate, resulting in 0.5% GO/4% PU being determined as the best content. This study overcomes the limitation that GO-modified asphalt cannot be used in cold areas due to its low-temperature performance, and it can be widely used as a new composite material with its high performance.
As an asphalt modifier, waste polypropylene (RPP) can not only optimize the performance of asphalt but also greatly alleviate the problem of waste plastic treatment, effectively reducing environmental pollution and resource waste. In order to evaluate the influence of RPP and styrene butadiene styrene (SBS) on asphalt performance, the application of RPP in modified asphalt pavement has been expanded. In this study, a dynamic shear rheometer (DSR), bending beam rheometer (BBR) and other instruments were used to evaluate the rheological properties of composite-modified asphalt. Fourier infrared spectroscopy (FTIR) and fluorescence microscopy (FM) was employed to conduct a microscopic analysis of the modified asphalt, and the layer analysis method was adopted to determine the optimal RPP content. The test results show that the rheological properties of asphalt are significantly improved by the composite modification of RPP and SBS. In addition, the cross-linking between polymer and asphalt is further enhanced by the composite addition of RPP and SBS. The comprehensive performance of modified asphalt is optimized at the RPP content of 2%, which is suitable for applications in the cold temperate zone. The RPP/SBS composite-modified asphalt is able to improve the utilization rate of RPP and has good environmental and economic benefits, thus exhibiting excellent comprehensive performance. However, the optimal asphalt content in the mixture was not investigated, and the economic benefits brought by the utilization of RPP were not evaluated and require further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.